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- Do NOT break end-to-end encryption at any stage

- Do NOT violate the privacy of any intermediate party of a forwarding chain

- Do NOT trace originators of messages not deemed illegal 

- Do NOT make messaging servers deviate from standard protocol

- Do NOT complicate affairs for the end user
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 (pkS, skS) ← SKeyGen(1λ, 
S) (pkU, skU) ← UKeyGen(1λ, U)

(rc, U) ← UserReg(S, pkS, 
skS, U, Unew, pkUnew, skUnew )

ad ← Auth(Ureg, pkUreg, rc, S, skS)

1/0 ← adVf(pkS, ad) M ← NewMsg (Usend, m, 
skUsend, ad := (pkUsend, athpkUsend)) 

Run by Usend ∈ U to create 
message tuple M := (m, 

md, ad) 
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Private Originator Tracing - Syntax

Tuple of PPT algorithms:

 (pkS, skS) ← SKeyGen(1λ, 
S) (pkU, skU) ← UKeyGen(1λ, U)

(rc, U) ← UserReg(S, pkS, 
skS, U, Unew, pkUnew, skUnew )

ad ← Auth(Ureg, pkUreg, rc, S, skS)

1/0 ← adVf(pkS, ad) M ← NewMsg (Usend, m, 
skUsend, ad := (pkUsend, athpkUsend)) 

1/0 ← MVf(pkS, M)
Verifies if M is a valid message 

tuple under pkS, ad and md 
12/21



Private Originator Tracing - Syntax

Tuple of PPT algorithms:

 (pkS, skS) ← SKeyGen(1λ, 
S) (pkU, skU) ← UKeyGen(1λ, U)

(rc, U) ← UserReg(S, pkS, 
skS, U, Unew, pkUnew, skUnew )

ad ← Auth(Ureg, pkUreg, rc, S, skS)

1/0 ← adVf(pkS, ad) M ← NewMsg (Usend, m, 
skUsend, ad := (pkUsend, athpkUsend)) 

1/0 ← MVf(pkS, M) M ← RcvMsg (Usend, M := (m, 
md, ad), Urcv)

Run by Urcv ∈ U to 
receive the tuple M 

created by Usend  ∈ U
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Private Originator Tracing - Syntax

Tuple of PPT algorithms:

 (pkS, skS) ← SKeyGen(1λ, 
S) (pkU, skU) ← UKeyGen(1λ, U)

(rc, U) ← UserReg(S, pkS, 
skS, U, Unew, pkUnew, skUnew )

ad ← Auth(Ureg, pkUreg, rc, S, skS)

1/0 ← adVf(pkS, ad) M ← NewMsg (Usend, m, 
skUsend, ad := (pkUsend, athpkUsend)) 

1/0 ← MVf(pkS, M) M ← FwdMsg (Urcv, M := (m, 
md, ad), Ufwd)

Run by Urcv ∈ U to 
forward the received 
tuple M to Ufwd  ∈ U
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Private Originator Tracing - Syntax

Tuple of PPT algorithms:

 

1/0 ← adVf(pkS, ad) M ← NewMsg (Usend, m, 
skUsend, ad := (pkUsend, athpkUsend)) 

1/0 ← MVf(pkS, M)

Run by Ufwd ∈ U to report 
a message tuple M by 

sending rep := (rm, rd) to 
L where rm := (m, md) 

and rd := ad (of corr. M)

M ← FwdMsg (Urcv, M := (m, 
md, ad), Ufwd)

rep := (rm, rd) ← Report (Ufwd, M := (m, md, ad), L)
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Private Originator Tracing - Syntax

Tuple of PPT algorithms:

 

1/0 ← adVf(pkS, ad) M ← NewMsg (Usend, m, 
skUsend, ad := (pkUsend, athpkUsend)) 

1/0 ← MVf(pkS, M) M ← FwdMsg (Urcv, M := (m, 
md, ad), Ufwd)

rep := (rm, rd) ← Report (Ufwd, M := (m, md, ad), L)

1/0 ← repVf(pkS, rep) Verifies if rep is a valid 
report under pkS
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Private Originator Tracing - Syntax

Tuple of PPT algorithms:

 

1/0 ← adVf(pkS, ad) M ← NewMsg (Usend, m, 
skUsend, ad := (pkUsend, athpkUsend)) 

1/0 ← MVf(pkS, M) M ← FwdMsg (Urcv, M := (m, 
md, ad), Ufwd)

rep := (rm, rd) ← Report (Ufwd, M := (m, md, ad), L)

1/0 ← repVf(pkS, rep) 1/0 ← rdVf(pkS, rd) Verifies if rd has valid 
reporting data under pkS
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Private Originator Tracing - Syntax

Tuple of PPT algorithms:

 

1/0 ← adVf(pkS, ad) M ← NewMsg (Usend, m, 
skUsend, ad := (pkUsend, athpkUsend)) 

1/0 ← MVf(pkS, M) M ← FwdMsg (Urcv, M := (m, 
md, ad), Ufwd)

rep := (rm, rd) ← Report (Ufwd, M := (m, md, ad), L)

1/0 ← repVf(pkS, rep) 1/0 ← rdVf(pkS, rd) Usend ← Trace(L, rd, S)

Interactively run by L and S 
that takes report data rd and 

returns originator Usend of 
reported message to L 

(without revealing m to S)
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- Ethical considerations? Cannot help against oppressive government policy on 
what is and isn’t ruled illegal!

- We want to mainly combat fake news and hate speech - cannot do anything if 
LE flags an otherwise innocuous message 

- Cannot help against social engineering - a bad guy can take over an honest 
person’s SIM card

- Storage costs? Need ~288TB for >2B users sending ~100B messages/day on 
WhatsApp 

- Public key signing? Still want to remove the need to produce so many keypairs 
and signatures!
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- (Pseudo) Tree-linkability:
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though!

We think this 
is still okay…
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Plan for the afternoon

- The Dilemma of End-to-End Encrypted Messaging
- India’s IT Rules 
- Private Originator Tracing - Overview
- Security Goals
- Related Work
- Private Originator Tracing - Syntax
- ATAVISM - a protocol sketch
- Security Analysis - Overview
- Benchmarking ATAVISM
- Tradeoffs and Limitations
- Future Work and Conclusion
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Future Work and Conclusion

- Semi-honest ➡ malicious service provider
- Semi-honest ➡ malicious law enforcement
- Optimize server involvement in preprocessing/refresh
- Pseudo tree-linkability ➡ Full tree unlinkability
- Filter spam reports to LE? Thought not technically illegal!
- Distributed storage version: 🥸 ➡ 😎

Thank you for 
your time! 🙏

Questions?
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