
ATAVISM: Private Originator
Tracing in E2EE Messaging

Archisman Dutta Debayan Gupta Arup Mondal
 (IIT Bombay) (Ashoka University)

Plan for the afternoon

- End-to-End Encrypted Messaging

Plan for the afternoon

- The Dilemma of End-to-End Encrypted Messaging

Plan for the afternoon

- The Dilemma of End-to-End Encrypted Messaging
- India’s IT Rules

Plan for the afternoon

- The Dilemma of End-to-End Encrypted Messaging
- India’s IT Rules
- Private Originator Tracing - Overview

Plan for the afternoon

- The Dilemma of End-to-End Encrypted Messaging
- India’s IT Rules
- Private Originator Tracing - Overview
- Security Goals

Plan for the afternoon

- The Dilemma of End-to-End Encrypted Messaging
- India’s IT Rules
- Private Originator Tracing - Overview
- Security Goals
- Related Work

Plan for the afternoon

- The Dilemma of End-to-End Encrypted Messaging
- India’s IT Rules
- Private Originator Tracing - Overview
- Security Goals
- Related Work
- Private Originator Tracing - Syntax

Plan for the afternoon

- The Dilemma of End-to-End Encrypted Messaging
- India’s IT Rules
- Private Originator Tracing - Overview
- Security Goals
- Related Work
- Private Originator Tracing - Syntax
- ATAVISM - a protocol sketch

Plan for the afternoon

- The Dilemma of End-to-End Encrypted Messaging
- India’s IT Rules
- Private Originator Tracing - Overview
- Security Goals
- Related Work
- Private Originator Tracing - Syntax
- ATAVISM - a protocol sketch
- Security Analysis - Overview

Plan for the afternoon

- The Dilemma of End-to-End Encrypted Messaging
- India’s IT Rules
- Private Originator Tracing - Overview
- Security Goals
- Related Work
- Private Originator Tracing - Syntax
- ATAVISM - a protocol sketch
- Security Analysis - Overview
- Benchmarking ATAVISM

Plan for the afternoon

- The Dilemma of End-to-End Encrypted Messaging
- India’s IT Rules
- Private Originator Tracing - Overview
- Security Goals
- Related Work
- Private Originator Tracing - Syntax
- ATAVISM - a protocol sketch
- Security Analysis - Overview
- Benchmarking ATAVISM
- Tradeoffs and Limitations

Plan for the afternoon

- The Dilemma of End-to-End Encrypted Messaging
- India’s IT Rules
- Private Originator Tracing - Overview
- Security Goals
- Related Work
- Private Originator Tracing - Syntax
- ATAVISM - a protocol sketch
- Security Analysis - Overview
- Benchmarking ATAVISM
- Tradeoffs and Limitations
- Future Work and Conclusion

Plan for the afternoon

- The Dilemma of End-to-End Encrypted Messaging
- India’s IT Rules
- Private Originator Tracing - Overview
- Security Goals
- Related Work
- Private Originator Tracing - Syntax
- ATAVISM - a protocol sketch
- Security Analysis - Overview
- Benchmarking ATAVISM
- Tradeoffs and Limitations
- Future Work and Conclusion

End-to-End Encrypted Messaging

 Alice Bob

1/21

End-to-End Encrypted Messaging

 Alice Service Provider Bob

1/21

End-to-End Encrypted Messaging

 Alice Service Provider Bob

Hello Bob Hello Bob

1/21

End-to-End Encrypted Messaging

 Alice Service Provider Bob

Hello Bob Hello Bob

Hello
Bob

1/21

End-to-End Encrypted Messaging

 Alice Service Provider Bob

Hello BobHello Bob

1/21

End-to-End Encrypted Messaging

 Alice Service Provider Bob

- No one but Alice and Bob – not even the service provider – can decrypt or read
the message

Hello BobHello Bob

1/21

End-to-End Encrypted Messaging

 Alice Service Provider Bob

- No one but Alice and Bob – not even the service provider – can decrypt or read
the message

- Eg: Signal, Matrix (Element), Session, WhatsApp, Telegram

Hello BobHello Bob

1/21

(The Dilemma of) End-to-End Encrypted Messaging

 Alice Service Provider Bob

- No one but Alice and Bob – not even the service provider – can decrypt or read
the message

- Eg: Signal, Matrix (Element), Session, WhatsApp, Telegram

Illegal contentIllegal content

1/21

(The Dilemma of) End-to-End Encrypted Messaging

 Alice Service Provider Bob

- No one but Alice and Bob – not even the service provider – can decrypt or read
the illegal message

Illegal contentIllegal content

1/21

(The Dilemma of) End-to-End Encrypted Messaging

 Alice Service Provider Bob

- No one but Alice and Bob – not even the service provider – can decrypt or read
the illegal message (eg. misinformation or hate speech)

Illegal contentIllegal content

1/21

(The Dilemma of) End-to-End Encrypted Messaging

 Alice Service Provider Bob

- No one but Alice and Bob – not even the service provider – can decrypt or read
the illegal message (eg. misinformation or hate speech)

- Hence, law enforcement cannot regulate misdemeanors on these platforms

Illegal contentIllegal content

1/21

Plan for the afternoon

- The Dilemma of End-to-End Encrypted Messaging
- India’s IT Rules
- Private Originator Tracing - Overview
- Security Goals
- Related Work
- Private Originator Tracing - Syntax
- ATAVISM - a protocol sketch
- Security Analysis - Overview
- Benchmarking ATAVISM
- Tradeoffs and Limitations
- Future Work and Conclusion

India’s IT Rules (2021)

2/21

India’s IT Rules (2021)

2/21

India’s IT Rules (2021)

- Government of India wants to trace originator of reported message in E2EE
clients

2/21

India’s IT Rules (2021)

- Government of India wants to trace originator of reported message in E2EE
clients

- Outcome: End-to-end encryption broken?! 😱
2/21

India’s IT Rules (2021)

3/21

India’s IT Rules (2021)

3/21

India’s IT Rules (2021)

3/21

Plan for the afternoon

- The Dilemma of End-to-End Encrypted Messaging
- India’s IT Rules
- Private Originator Tracing - Overview
- Related Work
- Security Goals
- Private Originator Tracing - Syntax
- ATAVISM - a protocol sketch
- Security Analysis - Overview
- Benchmarking ATAVISM
- Tradeoffs and Limitations
- Future Work and Conclusion

Private Originator Tracing - Overview

4/21

Private Originator Tracing - Overview

4/21

Private Originator Tracing - Overview

Misi
nfo

Misinfo

Misinfo
Misinfo

4/21

Private Originator Tracing - Overview

 …

Misi
nfo

Misinfo

Misinfo
Misinfo

4/21

Private Originator Tracing - Overview

 Report

 …

Misi
nfo

Misinfo

Misinfo
Misinfo

L.E.

Misinfo

4/21

Private Originator Tracing - Overview

 Report

 …

Misi
nfo

Misinfo

Misinfo
Misinfo

L.E.

Misinfo

That’s
illegal!

4/21

Private Originator Tracing - Overview

 Report

 …

Trace

Misi
nfo

Misinfo

Misinfo
Misinfo

L.E.

Misinfo

That’s
illegal!

4/21

Private Originator Tracing - Overview

- Do NOT break end-to-end encryption at any stage

5/21

Private Originator Tracing - Overview

- Do NOT break end-to-end encryption at any stage

- Do NOT violate the privacy of any intermediate party of a forwarding chain

5/21

Private Originator Tracing - Overview

- Do NOT break end-to-end encryption at any stage

- Do NOT violate the privacy of any intermediate party of a forwarding chain

- Do NOT trace originators of messages not deemed illegal

5/21

Private Originator Tracing - Overview

- Do NOT break end-to-end encryption at any stage

- Do NOT violate the privacy of any intermediate party of a forwarding chain

- Do NOT trace originators of messages not deemed illegal

- Do NOT make messaging servers deviate from standard protocol

5/21

Private Originator Tracing - Overview

- Do NOT break end-to-end encryption at any stage

- Do NOT violate the privacy of any intermediate party of a forwarding chain

- Do NOT trace originators of messages not deemed illegal

- Do NOT make messaging servers deviate from standard protocol

- Do NOT make law enforcement have to do a lot of work
5/21

Private Originator Tracing - Overview

- Do NOT break end-to-end encryption at any stage

- Do NOT violate the privacy of any intermediate party of a forwarding chain

- Do NOT trace originators of messages not deemed illegal

- Do NOT make messaging servers deviate from standard protocol

- Do NOT complicate affairs for the end user
5/21

Private Originator Tracing - Overview

“Can we design a simple, secure, and lightweight protocol

which identifies only the originator, induces a realistic

workload on law enforcement authorities, is

server-immutable, and preserves E2EE otherwise?”

6/21

Private Originator Tracing - Overview

✅

“Can we design a simple, secure, and lightweight protocol

which identifies only the originator, induces a realistic

workload on law enforcement authorities, is

server-immutable, and preserves E2EE otherwise?”

6/21

Plan for the afternoon

- The Dilemma of End-to-End Encrypted Messaging
- India’s IT Rules
- Private Originator Tracing - Overview
- Security Goals
- Related Work
- Private Originator Tracing - Syntax
- ATAVISM - a protocol sketch
- Security Analysis - Overview
- Benchmarking ATAVISM
- Tradeoffs and Limitations
- Future Work and Conclusion

Security Goals

Threat Model:

7/21

Security Goals

Threat Model:

- Malicious and colluding users

7/21

Security Goals

Threat Model:

- Malicious and colluding users - Semi-honest service provider

7/21

Security Goals

Threat Model:

- Malicious and colluding users - Semi-honest service provider

Platform under
exclusive control and

ownership

7/21

Security Goals

Threat Model:

- Malicious and colluding users - Semi-honest service provider

7/21

Security Goals

Threat Model:

- Malicious and colluding users - Semi-honest service provider
- Semi-honest law enforcement

LE

7/21

Security Goals

- Confidentiality

8/21

Security Goals

- Confidentiality

M

8/21

Security Goals

- Confidentiality

M

Hidden from
everyone not

involved

8/21

Security Goals

- Confidentiality

M

And LE (if
unreported)

8/21

Security Goals

- Confidentiality

M

Even service
provider

8/21

Security Goals

- Confidentiality

M

Non-neighboring
path hidden from

all

8/21

Security Goals

- Confidentiality

M

If reported and
flagged

8/21

Security Goals

- Confidentiality

M

Still hidden from
service provider

8/21

Security Goals

- Confidentiality

M

Only identified

8/21

Security Goals

- Confidentiality

M

Everything else
hidden from

SP/LE!

8/21

Security Goals

- Confidentiality
- Accountability

M

8/21

Security Goals

- Confidentiality
- Accountability

 Bob

M

If originated by Bob
(not forwarded)

8/21

Security Goals

- Confidentiality
- Accountability

 Bob

M

Must be traceable to
him at all times

8/21

Security Goals

- Confidentiality
- Accountability
- Unforgeability

 Bob
M

8/21

Security Goals

- Confidentiality
- Accountability
- Unforgeability

 Bob

M

Cannot frame Bob
for sending M

8/21

Security Goals

- Confidentiality
- Accountability
- Unforgeability

 Bob

M

Cannot lead a trace
of M back to Bob

8/21

Security Goals

- Confidentiality
- Accountability
- Unforgeability

 Bob

M

Cannot lead a trace
of M back to Bob

Cannot be retroactively
prosecuted after X days

8/21

Security Goals

- Confidentiality - Deniability
- Accountability
- Unforgeability

 Bob

M M M M

8/21

Security Goals

- Confidentiality - Deniability
- Accountability
- Unforgeability

 Bob

M M M M

Hey! I know
this is Bob’s

message!

8/21

Security Goals

- Confidentiality - Deniability
- Accountability
- Unforgeability

 Bob

M M M M

Hey! I know
this is Bob’s

message!

Nope,
unless

you prove
it? 🤷

8/21

Security Goals

- Confidentiality - Deniability
- Accountability
- Unforgeability

 Bob

M M M M

LE
Let’s

report!

8/21

Security Goals

- Confidentiality - Deniability
- Accountability
- Unforgeability

 Bob
Trace

M M M M

LE

Service
ProviderLet’s

report!

8/21

Security Goals

- Confidentiality - Deniability
- Accountability
- Unforgeability

 Bob
Trace

M M M M

I never
did

anything
with M

LE

Service
ProviderLet’s

report!

8/21

Security Goals

- Confidentiality - Deniability
- Accountability
- Unforgeability

 Bob
Trace

 M M M M

I never
did

anything
with M

LE

Service
Provider

Cannot deny
she sent M

Let’s
report!

Can deny he
forwarded M

8/21

Security Goals

- Confidentiality - Deniability
- Accountability
- Unforgeability

 Bob
Trace

 M M M M

I never
did

anything
with M

LE

Service
Provider

Cannot deny
she sent M

Only SP can
prove a

sender sent a
message

Let’s
report!

8/21

Security Goals

- Confidentiality - Deniability
- Accountability - Anonymity
- Unforgeability

 Bob

M M M M

8/21

Security Goals

- Confidentiality - Deniability
- Accountability - Anonymity
- Unforgeability

 Bob

M M M M

Bob has
no clue

8/21

Security Goals

- Confidentiality - Deniability
- Accountability - Anonymity
- Unforgeability

 Bob

M M M M

Who
they are

8/21

Security Goals

- Confidentiality - Deniability
- Accountability - Anonymity
- Unforgeability

 Bob

M M M M M

LE
Let’s

report!

8/21

Security Goals

- Confidentiality - Deniability
- Accountability - Anonymity
- Unforgeability

 Bob

 M M M M M

LE
Let’s

report!

8/21

Security Goals

- Confidentiality - Deniability
- Accountability - Anonymity
- Unforgeability

 Bob

M M M M M

LE

LE still
has no
clue

Let’s
report!

8/21

Security Goals

- Confidentiality - Deniability
- Accountability - Anonymity
- Unforgeability

 Bob

M M M M M

LE

Who
they are

Let’s
report!

8/21

Security Goals

- Confidentiality - Deniability
- Accountability - Anonymity
- Unforgeability - Forward/backward security

 Bob

M M M M M

8/21

Security Goals

- Confidentiality - Deniability
- Accountability - Anonymity
- Unforgeability - Forward/backward security

 Bob

M M M M M

8/21

Security Goals

- Confidentiality - Deniability
- Accountability - Anonymity
- Unforgeability - Forward/backward security

 Bob

M M M M M

Taken over by
adversary

today

8/21

Security Goals

- Confidentiality - Deniability
- Accountability - Anonymity
- Unforgeability - Forward/backward security

 Bob

M M M M M

Can’t do anything
about yesterday’s

message

8/21

Security Goals

- Confidentiality - Deniability
- Accountability - Anonymity
- Unforgeability - Forward/backward security

 Bob

M M M M M

Doesn’t apply to
messages stored

on device!

8/21

Security Goals

- Confidentiality - Deniability
- Accountability - Anonymity
- Unforgeability - Forward/backward security

 Bob

M M M M M

Recovers from
adversarial
attack today

8/21

Security Goals

- Confidentiality - Deniability
- Accountability - Anonymity
- Unforgeability - Forward/backward security

 Bob

M M M M M

Adversary
cannot frame

Bob tomorrow!

8/21

Security Goals

- Confidentiality - Deniability
- Accountability - Anonymity
- Unforgeability - Forward/backward security
- Tree-unlinkability Bob

M M M M M

M
M

8/21

Security Goals

- Confidentiality - Deniability
- Accountability - Anonymity
- Unforgeability - Forward/backward security
- Tree-unlinkability Bob

M M M M M

M
M Gets same message

twice from two
different forwarding

chains

8/21

Security Goals

- Confidentiality - Deniability
- Accountability - Anonymity
- Unforgeability - Forward/backward security
- Tree-unlinkability Bob

M M M M M

M
M Cannot tell if they

originate from the
same or different

source

8/21

Plan for the afternoon

- The Dilemma of End-to-End Encrypted Messaging
- India’s IT Rules
- Private Originator Tracing - Overview
- Security Goals
- Related Work
- Private Originator Tracing - Syntax
- ATAVISM - a protocol sketch
- Security Analysis - Overview
- Benchmarking ATAVISM
- Tradeoffs and Limitations
- Future Work and Conclusion

Related work

- Message Franking:

9/21

Related work

- Message Franking:

9/21

Related work

- Message Franking:

9/21

Related work

- Message Franking:

Misinfo!
Need to
report!

9/21

Related work

- Message Franking:

Misinfo!
Need to
report!

9/21

Related work

- Message Franking:

Misinfo!
Need to
report!

9/21

Related work

- Message Franking:

Misinfo!
Need to
report!

But I just
forwarded!

9/21

Related work

- Message Franking:

Misinfo!
Need to
report!

But I just
forwarded!

9/21

Related work

- Message Franking:

Misinfo!
Need to
report!

But I just
forwarded!

9/21

Related work

- Message Franking:

Misinfo!
Need to
report!

But I just
forwarded!

How to
catch this

guy?
9/21

Related work

- Message Franking:

Misinfo!
Need to
report!

But I just
forwarded!

Ask the
whole
chain!

9/21

Related work

- Message Franking:

Misinfo!
Need to
report!

But I just
forwarded!

Not
practical!

9/21

Related work

- Message Franking:

Misinfo!
Need to
report!

But I just
forwarded!

Violates
chain

privacy!
9/21

Related work

- Message Franking [GLR17] [DGR+18] [TGL+19]:

10/21

Related work

- Message Franking [GLR17] [DGR+18] [TGL+19]:
- Only traces immediate sender, not first originator

10/21

Related work

- Message Franking [GLR17] [DGR+18] [TGL+19]:
- Only traces immediate sender, not first originator
- Needs help of whole chain to trace beyond single party

9/2110/21

Related work

- Message Franking [GLR17] [DGR+18] [TGL+19]:
- Only traces immediate sender, not first originator
- Needs help of whole chain to trace beyond single party
- Impractical for large forwarding trees / offline users

9/2110/21

Related work

- Message Franking [GLR17] [DGR+18] [TGL+19]:
- Only traces immediate sender, not first originator
- Needs help of whole chain to trace beyond single party
- Impractical for large forwarding trees / offline users
- Violates privacy of forwarders

9/2110/21

Related work

- Message Franking [GLR17] [DGR+18] [TGL+19]:
- Only traces immediate sender, not first originator
- Needs help of whole chain to trace beyond single party
- Impractical for large forwarding trees / offline users
- Violates privacy of forwarders

- Message Traceback [TMR19] [PEB21] [IAV22][LRT+22] [KTW22]:

9/2110/21

Related work

- Message Franking [GLR17] [DGR+18] [TGL+19]:
- Only traces immediate sender, not first originator
- Needs help of whole chain to trace beyond single party
- Impractical for large forwarding trees / offline users
- Violates privacy of forwarders

- Message Traceback [TMR19] [PEB21] [IAV22][LRT+22] [KTW22] :
- Can trace entire forwarding tree of reported message

9/2110/21

Related work

- Message Franking [GLR17] [DGR+18] [TGL+19]:
- Only traces immediate sender, not first originator
- Needs help of whole chain to trace beyond single party
- Impractical for large forwarding trees / offline users
- Violates privacy of forwarders

- Message Traceback [TMR19] [PEB21] [IAV22][LRT+22] [KTW22] :
- Can trace entire forwarding tree of reported message
- Needs additional operations from service provider before message is sent

9/2110/21

Related work

- Message Franking [GLR17] [DGR+18] [TGL+19]:
- Only traces immediate sender, not first originator
- Needs help of whole chain to trace beyond single party
- Impractical for large forwarding trees / offline users
- Violates privacy of forwarders

- Message Traceback [TMR19] [PEB21] [IAV22][LRT+22] [KTW22] :
- Can trace entire forwarding tree of reported message
- Needs additional operations from service provider before message is sent
- Law enforcement workload is linear in number of messages, not number of reports

9/2110/21

Related work

- Message Franking [GLR17] [DGR+18] [TGL+19]:
- Only traces immediate sender, not first originator
- Needs help of whole chain to trace beyond single party
- Impractical for large forwarding trees / offline users
- Violates privacy of forwarders

- Message Traceback [TMR19] [PEB21] [IAV22][LRT+22] [KTW22] :
- Can trace entire forwarding tree of reported message
- Needs additional operations from service provider before message is sent
- Law enforcement workload is linear in number of messages, not number of reports
- User needs to do extra work at the time of sending message

9/2110/21

Related work

- Message Franking [GLR17] [DGR+18] [TGL+19]:
- Only traces immediate sender, not first originator
- Needs help of whole chain to trace beyond single party
- Impractical for large forwarding trees / offline users
- Violates privacy of forwarders

- Message Traceback [TMR19] [PEB21] [IAV22][LRT+22] [KTW22] :
- Can trace entire forwarding tree of reported message
- Needs additional operations from service provider before message is sent
- Law enforcement workload is linear in number of messages, not number of reports
- User needs to do extra work at the time of sending message

Can we do better than this?

9/2110/21

Related work

- Message Franking [GLR17] [DGR+18] [TGL+19]:
- Only traces immediate sender, not first originator
- Needs help of whole chain to trace beyond single party
- Impractical for large forwarding trees / offline users
- Violates privacy of forwarders

- Message Traceback [TMR19] [PEB21] [IAV22][LRT+22] [KTW22] :
- Can trace entire forwarding tree of reported message
- Needs additional operations from service provider before message is sent
- Law enforcement workload is linear in number of messages, not number of reports
- User needs to do extra work at the time of sending message

Can we do better than this? ✅

9/2110/21

Related Work

11/21

Related Work

We don’t care
about the chain,
only the source

11/21

Related Work

We operate in
P2P (not star)

network! 11/21

Related Work

But with some
preprocessing!

11/21

Related Work

So no server
operations at

runtime! 11/21

Related Work

But some before
runtime…

11/21

Related Work

Tracing data
generation not at

runtime 11/21

Related Work

But prior to it!
11/21

Related Work

We fulfill
practically all

aspects of E2EE 11/21

Related Work

Will later
explain why this

is partial…
11/21

Related Work

And why we
think that’s

okay!
11/21

Related Work

We don’t need
messaging server
to change its MO

11/21

Related Work

LE workload
linear in number

of reports
11/21

Related Work

Not number of
messages sent

11/21

Plan for the afternoon

- The Dilemma of End-to-End Encrypted Messaging
- India’s IT Rules
- Private Originator Tracing - Overview
- Security Goals
- Related Work
- Private Originator Tracing - Syntax
- ATAVISM - a protocol sketch
- Security Analysis - Overview
- Benchmarking ATAVISM
- Tradeoffs and Limitations
- Future Work and Conclusion

Private Originator Tracing - Syntax

Tuple of PPT algorithms:

12/21

Private Originator Tracing - Syntax

Tuple of PPT algorithms:

 (pkS, skS) ← SKeyGen(1λ,
S)

Run locally by SP to
generate their key

pair

12/21

Private Originator Tracing - Syntax

Tuple of PPT algorithms:

 (pkS, skS) ← SKeyGen(1λ,
S) (pkU, skU) ← UKeyGen(1λ, U)

Run locally by user
to generate their key

pair

12/21

Private Originator Tracing - Syntax

Tuple of PPT algorithms:

 (pkS, skS) ← SKeyGen(1λ,
S) (pkU, skU) ← UKeyGen(1λ, U)

Repeat to create as
many key pairs as

needed

12/21

Private Originator Tracing - Syntax

Tuple of PPT algorithms:

 (pkS, skS) ← SKeyGen(1λ,
S) (pkU, skU) ← UKeyGen(1λ, U)

(rc, U) ← UserReg(S, pkS,
skS, U, Unew, pkUnew, skUnew)

Interactively run by SP and new user,
returns reg. confirm. and updated
membership set U ← U ∪ Unew 12/21

Private Originator Tracing - Syntax

Tuple of PPT algorithms:

 (pkS, skS) ← SKeyGen(1λ,
S) (pkU, skU) ← UKeyGen(1λ, U)

(rc, U) ← UserReg(S, pkS,
skS, U, Unew, pkUnew, skUnew)

ad ← Auth(Ureg, pkUreg, rc, S, skS)

Interactively run by SP and reg. user Ureg ∈ U to auth. and record
(pkUreg, Ureg), returns authoring data ad := (pkUreg, athpkUreg) where

athpkUreg authenticates pkUreg using skS

12/21

Private Originator Tracing - Syntax

Tuple of PPT algorithms:

 (pkS, skS) ← SKeyGen(1λ,
S) (pkU, skU) ← UKeyGen(1λ, U)

(rc, U) ← UserReg(S, pkS,
skS, U, Unew, pkUnew, skUnew)

ad ← Auth(Ureg, pkUreg, rc, S, skS)

1/0 ← adVf(pkS, ad) Verify if authoring data is
valid under pkS

12/21

Private Originator Tracing - Syntax

Tuple of PPT algorithms:

 (pkS, skS) ← SKeyGen(1λ,
S) (pkU, skU) ← UKeyGen(1λ, U)

(rc, U) ← UserReg(S, pkS,
skS, U, Unew, pkUnew, skUnew)

ad ← Auth(Ureg, pkUreg, rc, S, skS)

1/0 ← adVf(pkS, ad) M ← NewMsg (Usend, m,
skUsend, ad := (pkUsend, athpkUsend))

Run by Usend ∈ U to create
message tuple M := (m,

md, ad)

12/21

Private Originator Tracing - Syntax

Tuple of PPT algorithms:

 (pkS, skS) ← SKeyGen(1λ,
S) (pkU, skU) ← UKeyGen(1λ, U)

(rc, U) ← UserReg(S, pkS,
skS, U, Unew, pkUnew, skUnew)

ad ← Auth(Ureg, pkUreg, rc, S, skS)

1/0 ← adVf(pkS, ad) M ← NewMsg (Usend, m,
skUsend, ad := (pkUsend, athpkUsend))

1/0 ← MVf(pkS, M)
Verifies if M is a valid message

tuple under pkS, ad and md
12/21

Private Originator Tracing - Syntax

Tuple of PPT algorithms:

 (pkS, skS) ← SKeyGen(1λ,
S) (pkU, skU) ← UKeyGen(1λ, U)

(rc, U) ← UserReg(S, pkS,
skS, U, Unew, pkUnew, skUnew)

ad ← Auth(Ureg, pkUreg, rc, S, skS)

1/0 ← adVf(pkS, ad) M ← NewMsg (Usend, m,
skUsend, ad := (pkUsend, athpkUsend))

1/0 ← MVf(pkS, M) M ← RcvMsg (Usend, M := (m,
md, ad), Urcv)

Run by Urcv ∈ U to
receive the tuple M

created by Usend ∈ U

12/21

Private Originator Tracing - Syntax

Tuple of PPT algorithms:

 (pkS, skS) ← SKeyGen(1λ,
S) (pkU, skU) ← UKeyGen(1λ, U)

(rc, U) ← UserReg(S, pkS,
skS, U, Unew, pkUnew, skUnew)

ad ← Auth(Ureg, pkUreg, rc, S, skS)

1/0 ← adVf(pkS, ad) M ← NewMsg (Usend, m,
skUsend, ad := (pkUsend, athpkUsend))

1/0 ← MVf(pkS, M) M ← FwdMsg (Urcv, M := (m,
md, ad), Ufwd)

Run by Urcv ∈ U to
forward the received
tuple M to Ufwd ∈ U

12/21

Private Originator Tracing - Syntax

Tuple of PPT algorithms:

1/0 ← adVf(pkS, ad) M ← NewMsg (Usend, m,
skUsend, ad := (pkUsend, athpkUsend))

1/0 ← MVf(pkS, M)

Run by Ufwd ∈ U to report
a message tuple M by

sending rep := (rm, rd) to
L where rm := (m, md)

and rd := ad (of corr. M)

M ← FwdMsg (Urcv, M := (m,
md, ad), Ufwd)

rep := (rm, rd) ← Report (Ufwd, M := (m, md, ad), L)

12/21

Private Originator Tracing - Syntax

Tuple of PPT algorithms:

1/0 ← adVf(pkS, ad) M ← NewMsg (Usend, m,
skUsend, ad := (pkUsend, athpkUsend))

1/0 ← MVf(pkS, M) M ← FwdMsg (Urcv, M := (m,
md, ad), Ufwd)

rep := (rm, rd) ← Report (Ufwd, M := (m, md, ad), L)

1/0 ← repVf(pkS, rep) Verifies if rep is a valid
report under pkS

12/21

Private Originator Tracing - Syntax

Tuple of PPT algorithms:

1/0 ← adVf(pkS, ad) M ← NewMsg (Usend, m,
skUsend, ad := (pkUsend, athpkUsend))

1/0 ← MVf(pkS, M) M ← FwdMsg (Urcv, M := (m,
md, ad), Ufwd)

rep := (rm, rd) ← Report (Ufwd, M := (m, md, ad), L)

1/0 ← repVf(pkS, rep) 1/0 ← rdVf(pkS, rd) Verifies if rd has valid
reporting data under pkS

12/21

Private Originator Tracing - Syntax

Tuple of PPT algorithms:

1/0 ← adVf(pkS, ad) M ← NewMsg (Usend, m,
skUsend, ad := (pkUsend, athpkUsend))

1/0 ← MVf(pkS, M) M ← FwdMsg (Urcv, M := (m,
md, ad), Ufwd)

rep := (rm, rd) ← Report (Ufwd, M := (m, md, ad), L)

1/0 ← repVf(pkS, rep) 1/0 ← rdVf(pkS, rd) Usend ← Trace(L, rd, S)

Interactively run by L and S
that takes report data rd and

returns originator Usend of
reported message to L

(without revealing m to S)

12/21

Plan for the afternoon

- The Dilemma of End-to-End Encrypted Messaging
- India’s IT Rules
- Private Originator Tracing - Overview
- Security Goals
- Related Work
- Private Originator Tracing - Syntax
- ATAVISM - a protocol sketch
- Security Analysis - Overview
- Benchmarking ATAVISM
- Tradeoffs and Limitations
- Future Work and Conclusion

ATAVISM - a protocol sketch

Service
Provider

13/21

ATAVISM - a protocol sketch

 (pkS, skS)

 Preprocessing phase

Service
Provider

12/2113/21

ATAVISM - a protocol sketch

 (pkS, skS)

 (pk0, sk0) Preprocessing phase
 …
(pk999, sk999)

Service
Provider

12/2113/21

ATAVISM - a protocol sketch

 (pkS, skS)

 (pk0, sk0) Preprocessing phase
 …
(pk999, sk999)

Service
Provider{pk 0

, …
, pk 999

}

12/2113/21

ATAVISM - a protocol sketch

 (pkS, skS)

 (pk0, sk0) Preprocessing phase
 …
(pk999, sk999)

Service
Provider{pk 0

, …
, pk 999

}

{σ0, …
, σ999}

12/2113/21

ATAVISM - a protocol sketch

 (pkS, skS)

 (pk0, sk0) Preprocessing phase
 …
(pk999, sk999)

Service
Provider{pk 0

, …
, pk 999

}

{σ0, …
, σ999}

σi = Sign(skS, pki)

12/2113/21

ATAVISM - a protocol sketch

 (pkS, skS)

 (pk0, sk0, σ0) Preprocessing phase
 …
(pk999, sk999, σ999)

Service
Provider

(pki, id)

12/2113/21

ATAVISM - a protocol sketch

 (pkS, skS)

 (pk0, sk0, σ0) Preprocessing phase
 …
(pk999, sk999, σ999)

Service
Provider

Or in
practice...

(H(pki), id)

12/2113/21

ATAVISM - a protocol sketch

 (pkS, skS)

Repeat for all registered users!

 (pk0, sk0, σ0) Preprocessing phase
 …
(pk999, sk999, σ999)

Service
Provider

(pki, id)

12/2113/21

ATAVISM - a protocol sketch

 (pkS, skS)

Repeat for all registered users!

 (pk0, sk0, σ0) Preprocessing phase ✅
 …
(pk999, sk999, σ999)

Service
Provider

(pki, id)

12/2113/21

ATAVISM - a protocol sketch

Service
Provider

“Hey, do you
want to switch to

using Signal?”

m

 m

Online phase

12/2113/21

ATAVISM - a protocol sketch

Service
Provider

m
s = Sign(sk, m)

pk
 σ

M

 M

Online phase

12/2113/21

ATAVISM - a protocol sketch

Service
Provider

m
s = Sign(sk, m)

pk
 σ

M

 M

Signed with any
unused (sk, pk)

Online phase

12/2113/21

ATAVISM - a protocol sketch

Service
Provider

m
s = Sign(sk, m)

pk
 σ

M

Signed with any
unused (sk, pk)

Corr. to sk
M

Online phase

12/2113/21

ATAVISM - a protocol sketch

Service
Provider

m
s = Sign(sk, m)

pk
 σ

M

 M

Signed with any
unused (sk, pk)

Corr. to sk

Verifies owner of sk
corr. to pk

originated m,
doesn’t reveal

identity

Online phase

12/2113/21

ATAVISM - a protocol sketch

Service
Provider

m
s = Sign(sk, m)

pk
 σ

M

 M

Signed with any
unused (sk, pk)

Corr. to sk

Sign. on pk under sks

Verifies owner of sk
corr. to pk

originated m,
doesn’t reveal

identity

Online phase

12/2113/21

ATAVISM - a protocol sketch

Service
Provider

m
s = Sign(sk, m)

pk
 σ

M

 M

Signed with any
unused (sk, pk)

Corr. to sk

Sign. on pk under sks

Verifies owner of sk
corr. to pk

originated m,
doesn’t reveal

identity
Verifies owner of
sk corr. to pk is a

registered user

Pseudonymous

Online phase

12/2113/21

ATAVISM - a protocol sketch

Service
Provider

m
s = Sign(sk, m)

pk
 σ

M

 M

Signed with any
unused (sk, pk)

Corr. to sk

Sign. on pk under sks

Verifies owner of sk
corr. to pk

originated m,
doesn’t reveal

identity
Verifies owner of
sk corr. to pk is a

registered user

Use only once!

Online phase

13/21

ATAVISM - a protocol sketch

Service
Provider

m
s = Sign(sk, m)

pk
 σ

M

 M
Online phase

13/21

ATAVISM - a protocol sketch

 M

Service
Provider

m
s = Sign(sk, m)

pk
 σ

M M

M

Online phase
13/21

ATAVISM - a protocol sketch

 M

Service
Provider

m
s = Sign(sk, m)

pk
 σ

M M

M

Online phase
13/21

ATAVISM - a protocol sketch

 M

Service
Provider

m
s = Sign(sk, m)

pk
 σ

M M

M

Gotta
report
this!

Online phase
13/21

ATAVISM - a protocol sketch

 Report

 M

Service
Provider

m
s = Sign(sk, m)

pk
 σ

M M

M

L.E.

Online phase
13/21

ATAVISM - a protocol sketch

 M

Service
Provider

m
s = Sign(sk, m)

pk
 σ

M M

M

L.E.

That’s
illegal!
Gotta
trace!

Online phase
13/21

ATAVISM - a protocol sketch

 Trace

 M

Service
Provider

m
s = Sign(sk, m)

pk
 σ

M M

M

L.E.

pk, σ

Online phase
13/21

ATAVISM - a protocol sketch

 M

Service
Provider

m
s = Sign(sk, m)

pk
 σ

M M

M

L.E.
(pk, id)

Online phase
13/21

ATAVISM - a protocol sketch

 M

Service
Provider

m
s = Sign(sk, m)

pk
 σ

M M

M

L.E.
id

Online phase
13/21

ATAVISM - a protocol sketch

 M

Service
Provider

m
s = Sign(sk, m)

pk
 σ

M M

M

L.E.
id

Online phase
13/21

ATAVISM - a protocol sketch

 M

Service
Provider

m
s = Sign(sk, m)

pk
 σ

M M

M

L.E.
id

id hidden from
everyone else

Online phase ✅
13/21

ATAVISM - a protocol sketch

 M

Service
Provider

m
s = Sign(sk, m)

pk
 σ

M M

M

L.E.
id

What if
wrong?

13/21

ATAVISM - a protocol sketch

 (pkS, skS)

 (pk0, sk0)
 …
(pk999, sk999)

Service
Provider{pk 0

, …
, pk 999

}

✅ Prevent user from
registering pk that does not
belong to them
✅ Prevent service provider
from framing user

13/21

ATAVISM - a protocol sketch

 (pkS, skS)

 (pk0, sk0, v0) vi = Sign(ski, pki)
 …
(pk999, sk999, v999)

Service
Provider

{(p
k 0

, v 0
), …

, (p
k 999

, v 999
)}

✅ Prevent user from
registering pk that does not
belong to them
✅ Prevent service provider
from framing user

13/21

ATAVISM - a protocol sketch

 (pkS, skS)

σi = Sign(skS, pki)

 (pk0, sk0, v0)
 …
(pk999, sk999, v999)

Service
Provider

{σ0, …
, σ999}

{(p
k 0

, v 0
), …

, (p
k 999

, v 999
)}

✅ Prevent user from
registering pk that does not
belong to them
✅ Prevent service provider
from framing user

13/21

ATAVISM - a protocol sketch

 (pkS, skS)

σi = Sign(skS, pki)

 (pk0, sk0, v0)
 …
(pk999, sk999, v999)

Service
Provider

{σ0, …
, σ999}

{(p
k 0

, v 0
), …

, (p
k 999

, v 999
)}

✅ Prevent user from
registering pk that does not
belong to them
✅ Prevent service provider
from framing user

(pki, vi, id)

Cannot frame user
without forging sig!

13/21

ATAVISM - a protocol sketch

 (pkS, skS)

 (pk0, sk0, v0, σ0)
 …
(pk999, sk999, v999, σ999)

Service
Provider

(pki, vi, id)

What to do when
keypairs almost run out?

13/21

ATAVISM - a protocol sketch

 (pkS, skS)

 (pk0, sk0, v0, σ0)
 …
(pk999, sk999, v999, σ999)

Service
Provider

(pki, vi, id)

What to do when
keypairs almost run out?

Refresh phase
14/21

ATAVISM - a protocol sketch

 (pkS, skS)

 (pk0, sk0, v0, σ0)
 …
(pk999, sk999, v999, σ999)

Service
Provider

(pki, vi, id)

Set aside this tuple

Refresh phase
14/21

ATAVISM - a protocol sketch

 (pkS, skS)

 (pk1, sk1, v1, σ1)
 …
(pk999, sk999, v999, σ999)

Service
Provider

(pki, vi, id)

pk0, sk0, v0, σ0

Refresh phase
14/21

ATAVISM - a protocol sketch

 (pkS, skS)

 (pk1, sk1, v1, σ1)
 …
(pk999, sk999, v999, σ999)

Service
Provider

(pki, vi, id)

pk0, sk0, v0, σ0

(pk 0
, σ 0

)

Refresh phase
14/21

ATAVISM - a protocol sketch

 (pkS, skS)

 (pk1, sk1, v1, σ1)
 …
(pk999, sk999, v999, σ999)

Service
Provider

(pki, vi, id)

pk0, sk0, v0, σ0

rand. r

(pk 0
, σ 0

)

Refresh phase
14/21

ATAVISM - a protocol sketch

 (pkS, skS)

 (pk1, sk1, v1, σ1)
 …
(pk999, sk999, v999, σ999)

Service
Provider

(pki, vi, id)

pk0, sk0, v0, σ0

σ r =
 Sign (sk 0

, r)

rand. r

Refresh phase
14/21

ATAVISM - a protocol sketch

 (pkS, skS)

 (pk1, sk1, v1, σ1)
 …
(pk999, sk999, v999, σ999)

Service
Provider

Ver(pk0, σr)

pk0, sk0, v0, σ0

σ r =
 Sign (sk 0

, r)

rand. r

Refresh phase
14/21

ATAVISM - a protocol sketch

 (pkS, skS)

 (pk1, sk1, v1, σ1)
 …
(pk999, sk999, v999, σ999)

Service
Provider

Ver(pk0, σr)

 Auth ✅

pk0, sk0, v0, σ0

σ r =
 Sign (sk 0

, r)

rand. r

Refresh phase
14/21

ATAVISM - a protocol sketch

 (pkS, skS)

 (pk1000, sk1000)
 …
(pk1999, sk1999)

Service
Provider

Refresh phase
14/21

ATAVISM - a protocol sketch

 (pkS, skS)

 (pk1000, sk1000)
 …
(pk1999, sk1999)

Service
Provider{pk 1000

, …
, pk 1999

}

Refresh phase
14/21

ATAVISM - a protocol sketch

 (pkS, skS)

 (pk1000, sk1000)
 …
(pk1999, sk1999)

Service
Provider{pk 1000

, …
, pk 1999

}

{σ1000, …
, σ1999}

Refresh phase
14/21

ATAVISM - a protocol sketch

 (pkS, skS)

 (pk1000, sk1000, σ1000)
 …
(pk1999, sk1999, σ1999)

Service
Provider{pk 1000

, …
, pk 1999

}

{σ1000, …
, σ1999}

σi = Sign(skS, pki)

(pki, id)

Refresh phase
14/21

ATAVISM - a protocol sketch

 (pkS, skS)

 (pk1000, sk1000, σ1000)
 …
(pk1999, sk1999, σ1999)

Service
Provider{pk 1000

, …
, pk 1999

}

{σ1000, …
, σ1999}

Refresh at non-peak times to
minimize load

σi = Sign(skS, pki)

(pki, id)

Refresh phase
14/21

ATAVISM - a protocol sketch

 (pkS, skS)

 (pk1000, sk1000, σ1000)
 …
(pk1999, sk1999, σ1999)

Service
Provider{pk 1000

, …
, pk 1999

}

{σ1000, …
, σ1999}

Refresh at non-peak times to
minimize load

σi = Sign(skS, pki)

Doesn’t interfere with normal
messaging!

(pki, id)

Refresh phase
14/21

ATAVISM - a protocol sketch

 (pkS, skS)

 (pk1000, sk1000, σ1000)
 …
(pk1999, sk1999, σ1999)

Service
Provider{pk 1000

, …
, pk 1999

}

{σ1000, …
, σ1999}

What about statute of
limitations?

σi = Sign(skS, pki)

(pki, id)

Refresh phase
14/21

ATAVISM - a protocol sketch

 (pkS, skS)

 (pk1000, sk1000, σ1000)
 …
(pk1999, sk1999, σ1999)

Service
Provider{pk 1000

, …
, pk 1999

}

{σ1000, …
, σ1999}

What about statute of
limitations?

σi = Sign(skS, pki)

Delete (pk, id) after X days

(pki, id)

Refresh phase
14/21

ATAVISM - a protocol sketch

 (pkS, skS)

 (pk1000, sk1000, σ1000)
 …
(pk1999, sk1999, σ1999)

Service
Provider{pk 1000

, …
, pk 1999

}

{σ1000, …
, σ1999}

What about statute of
limitations?

σi = Sign(skS, pki)

Delete (pk, id) after X days

Use new (pkS, skS) & reveal
old skS values after X days

(pki, id)

Refresh phase
14/21

ATAVISM - a protocol sketch

 (pkS, skS)

 (pk1000, sk1000, σ1000)
 …
(pk1999, sk1999, σ1999)

Service
Provider{pk 1000

, …
, pk 1999

}

{σ1000, …
, σ1999}

Do we really need this large
database? Can’t we avoid it?

(pki, id)

15/21

ATAVISM - a protocol sketch

 (pkS, skS)

 (pk1000, sk1000, σ1000)
 …
(pk1999, sk1999, σ1999)

Service
Provider{pk 1000

, …
, pk 1999

}

{σ1000, …
, σ1999}

We technically can…

(pki, id)

Distributed variant
15/21

ATAVISM - a protocol sketch

 (pkS, skS)

 (pk1000, sk1000, σ1000)
 …
(pk1999, sk1999, σ1999)

Service
Provider{pk 1000

, …
, pk 1999

}

{σ1000, …
, σ1999}

We technically can…

(pki, id)

L.E.

Distributed variant
15/21

ATAVISM - a protocol sketch

 (pkS, skS) (pkL, skL)

 (pk1000, sk1000, σ1000)
 …
(pk1999, sk1999, σ1999)

Service
Provider{pk 1000

, …
, pk 1999

}

{σ1000, …
, σ1999}

We technically can…

(pki, id)

L.E.

Distributed variant
15/21

ATAVISM - a protocol sketch

 (pkS, skS) (pkL, skL)

u = Enc(pkL, id)

 (pk1000, sk1000, σ1000)
 …
(pk1999, sk1999, σ1999)

Service
Provider{pk 1000

, …
, pk 1999

}

{σ1000, …
, σ1999}

L.E.

Distributed variant
15/21

ATAVISM - a protocol sketch

 (pkS, skS) (pkL, skL)

u = Enc(pkL, id)

 (pk1000, sk1000, σ1000)
 …
(pk1999, sk1999, σ1999)

Service
Provider{pk 1000

, …
, pk 1999

}

{σ1000, …
, σ1999}

L.E.

σi = Sign(skS, H(u||pki))

Distributed variant
15/21

ATAVISM - a protocol sketch

 (pkS, skS) (pkL, skL)

u = Enc(pkL, id)

 (pk1000, sk1000, σ1000)
 …
(pk1999, sk1999, σ1999)

Service
Provider{pk 1000

, …
, pk 1999

}

{u, σ1000, …
, σ1999}

L.E.

σi = Sign(skS, H(u||pki))

Distributed variant
15/21

ATAVISM - a protocol sketch

 (pkS, skS) (pkL, skL)

u = Enc(pkL, id)

 (pk1000, sk1000, σ1000)
 …
(pk1999, sk1999, σ1999)

Service
Provider{pk 1000

, …
, pk 1999

}

{u, σ1000, …
, σ1999}

L.E.

σi = Sign(skS, H(u||pki))
Attached with every σ

Distributed variant
15/21

ATAVISM - a protocol sketch

 Report

 (pkS, skS) (pkL, skL)

u = Enc(pkL, id)

 (pk1000, sk1000, σ1000)
 …
(pk1999, sk1999, σ1999)

Service
Provider{pk 1000

, …
, pk 1999

}

{u, σ1000, …
, σ1999}

L.E.

σi = Sign(skS, H(u||pki))
Attached with every σ

m
s = Sign(sk, m)

pk
(u, σ)

Distributed variant
15/21

ATAVISM - a protocol sketch

 Report

 (pkS, skS) (pkL, skL)

id = Dec(skL, u)

 (pk1000, sk1000, σ1000)
 …
(pk1999, sk1999, σ1999)

Service
Provider{pk 1000

, …
, pk 1999

}

{u, σ1000, …
, σ1999}

L.E.

σi = Sign(skS, H(u||pki))
Attached with every σ

m
s = Sign(sk, m)

pk
(u, σ)

Distributed variant
15/21

ATAVISM - a protocol sketch

 Report

 (pkS, skS) (pkL, skL)

id = Dec(skL, u)

 (pk1000, sk1000, σ1000)
 …
(pk1999, sk1999, σ1999)

Service
Provider{pk 1000

, …
, pk 1999

}

{u, σ1000, …
, σ1999}

L.E.

σi = Sign(skS, H(u||pki))
Attached with every σ

m
s = Sign(sk, m)

pk
(u, σ)

Prevents tampering!

Distributed variant
15/21

ATAVISM - a protocol sketch

 (pkS, skS)

 (pk1000, sk1000, σ1000)
 …
(pk1999, sk1999, σ1999)

Service
Provider{pk 1000

, …
, pk 1999

}

{σ1000, …
, σ1999}

Another alternative…

(pki, id)

L.E.

Distributed variant
15/21

ATAVISM - a protocol sketch

 (pkS, skS)

 KS

 (pk1000, sk1000, σ1000)
 …
(pk1999, sk1999, σ1999)

Service
Provider{pk 1000

, …
, pk 1999

}

{σ1000, …
, σ1999}

L.E.

Symm. key

Distributed variant
15/21

ATAVISM - a protocol sketch

 (pkS, skS)

 KS

 (pk1000, sk1000, σ1000)
 …
(pk1999, sk1999, σ1999)

Service
Provider{pk 1000

, …
, pk 1999

}

{σ1000, …
, σ1999}

L.E.

Kept secret!

Distributed variant
15/21

ATAVISM - a protocol sketch

 (pkS, skS)

 KS

 (pk1000, sk1000, σ1000)
 …
(pk1999, sk1999, σ1999)

Service
Provider{pk 1000

, …
, pk 1999

}

{σ1000, …
, σ1999}

L.E.

ui = Enc(KS, id||pki)

Distributed variant
15/21

ATAVISM - a protocol sketch

 (pkS, skS)

 KS

 (pk1000, sk1000, σ1000)
 …
(pk1999, sk1999, σ1999)

Service
Provider{pk 1000

, …
, pk 1999

}

{σ1000, …
, σ1999}

L.E.

ui = Enc(KS, id||pki)

σi = Sign(skS, H(ui||pki))

Distributed variant
15/21

ATAVISM - a protocol sketch

 (pkS, skS)

 KS

 (pk1000, sk1000, σ1000)
 …
(pk1999, sk1999, σ1999)

Service
Provider{pk 1000

, …
, pk 1999

}

(ui, σ i)

L.E.

ui = Enc(KS, id||pki)

σi = Sign(skS, H(ui||pki))

Distributed variant
15/21

ATAVISM - a protocol sketch

 Report

 (pkS, skS)

 KS

 (pk1000, sk1000, (u1000, σ1000))
 …
(pk1999, sk1999, (u1999, σ1999))

Service
Provider{pk 1000

, …
, pk 1999

}

(ui, σ i)

L.E.

ui = Enc(KS, id||pki)

σi = Sign(skS, H(ui||pki))

m
s = Sign(sk, m)

pk
(u, σ)

Distributed variant
15/21

ATAVISM - a protocol sketch

 Report

 (pkS, skS)

 KS

 (pk1000, sk1000, (u1000, σ1000))
 …
(pk1999, sk1999, (u1999, σ1999))

Service
Provider{pk 1000

, …
, pk 1999

}

(ui, σ i)

L.E.

ui = Enc(KS, id||pki)

σi = Sign(skS, H(ui||pki))

m
s = Sign(sk, m)

pk
(u, σ)

(pk, u, σ)

Distributed variant
15/21

ATAVISM - a protocol sketch

 Report

 (pkS, skS)

 KS

 (pk1000, sk1000, (u1000, σ1000))
 …
(pk1999, sk1999, (u1999, σ1999))

Service
Provider{pk 1000

, …
, pk 1999

}

(ui, σ i)

L.E.

ui = Enc(KS, id||pki)

σi = Sign(skS, H(ui||pki))

m
s = Sign(sk, m)

pk
(u, σ)

id

Distributed variant
15/21

ATAVISM - a protocol sketch

 (pkS, skS)

 (pk1000, sk1000, σ1000)
 …
(pk1999, sk1999, σ1999)

Service
Provider{pk 1000

, …
, pk 1999

}

{σ1000, …
, σ1999}

But both these alternatives
can create havoc!

(pki, id)

L.E.

Distributed variant
15/21

ATAVISM - a protocol sketch

 (pkS, skS)

 (pk1000, sk1000, σ1000)
 …
(pk1999, sk1999, σ1999)

Service
Provider{pk 1000

, …
, pk 1999

}

{σ1000, …
, σ1999}

Former involves sensitive
keydata stored with LE that

might get leaked!

(pki, id)

L.E.

Distributed variant
15/21

ATAVISM - a protocol sketch

 (pkS, skS)

 (pk1000, sk1000, σ1000)
 …
(pk1999, sk1999, σ1999)

Service
Provider{pk 1000

, …
, pk 1999

}

{σ1000, …
, σ1999}

Latter involves sensitive keydata
stored with SP that might get

leaked!

(pki, id)

L.E.

Distributed variant
15/21

ATAVISM - a protocol sketch

 (pkS, skS)

 (pk1000, sk1000, σ1000)
 …
(pk1999, sk1999, σ1999)

Service
Provider{pk 1000

, …
, pk 1999

}

{σ1000, …
, σ1999}

Both of which can deanonymize
entire user base!

(pki, id)

L.E.

Distributed variant
15/21

ATAVISM - a protocol sketch

 (pkS, skS)

 (pk1000, sk1000, σ1000)
 …
(pk1999, sk1999, σ1999)

Service
Provider{pk 1000

, …
, pk 1999

}

{σ1000, …
, σ1999}

Much smaller point of failure,
compared to large database!

(pki, id)

L.E.

Distributed variant
15/21

ATAVISM - a protocol sketch

 (pkS, skS)

 (pk1000, sk1000, σ1000)
 …
(pk1999, sk1999, σ1999)

Service
Provider{pk 1000

, …
, pk 1999

}

{σ1000, …
, σ1999}

Much smaller point of failure,
compared to large database!

(pki, id)

L.E.

Distributed variant
worth it? 🤔

Distributed variant
15/21

Plan for the afternoon

- The Dilemma of End-to-End Encrypted Messaging
- India’s IT Rules
- Private Originator Tracing - Overview
- Security Goals
- Related Work
- Private Originator Tracing - Syntax
- ATAVISM - a protocol sketch
- Security Analysis - Overview
- Benchmarking ATAVISM
- Tradeoffs and Limitations
- Future Work and Conclusion

Security Analysis

- Confidentiality

16/21

Security Analysis

- Confidentiality

Adv. learns nothing more
about user messaging
activity than it could

without the tracing scheme

16/21

Security Analysis

- Confidentiality

Security of underlying
signature scheme used

Adv. learns nothing more
about user messaging
activity than it could

without the tracing scheme

Reduces to

16/21

Security Analysis

- Confidentiality

How?

Security of underlying
signature scheme used

Adv. learns nothing more
about user messaging
activity than it could

without the tracing scheme

Reduces to

16/21

Security Analysis

- Confidentiality

Security of underlying
signature scheme used

 m
s = Sign(sk, m)

pk
σ = Sign(skS, pk)

Adv. learns nothing more
about user messaging
activity than it could

without the tracing scheme

Reduces to

16/21

Security Analysis

- Confidentiality

Security of underlying
signature scheme used

 m
s = Sign(sk, m)

pk
σ = Sign(skS, pk)

As in normal E2EE, no
extra power to adv.

Adv. learns nothing more
about user messaging
activity than it could

without the tracing scheme

Reduces to

16/21

Security Analysis

- Confidentiality

Security of underlying
signature scheme used

 m
s = Sign(sk, m)

pk
σ = Sign(skS, pk)

Should only reveal that m is
authored by owner of sk corr. to pk

Adv. learns nothing more
about user messaging
activity than it could

without the tracing scheme

Reduces to

16/21

Security Analysis

- Confidentiality

Security of underlying
signature scheme used

 m
s = Sign(sk, m)

pk
σ = Sign(skS, pk)

No one but SP knows who it
belongs to

Adv. learns nothing more
about user messaging
activity than it could

without the tracing scheme

Reduces to

16/21

Security Analysis

- Confidentiality

Security of underlying
signature scheme used

 m
s = Sign(sk, m)

pk
σ = Sign(skS, pk)

And LE, if message is traced

Adv. learns nothing more
about user messaging
activity than it could

without the tracing scheme

Reduces to

16/21

Security Analysis

- Confidentiality

Security of underlying
signature scheme usedReduces to

 m
s = Sign(sk, m)

pk
σ = Sign(skS, pk)

Should only reveal that the sender
of m is registered with SP

Adv. learns nothing more
about user messaging
activity than it could

without the tracing scheme

16/21

Security Analysis

- Confidentiality

E2EE

 m
s = Sign(sk, m)

pk
σ = Sign(skS, pk)

SP learns nothing more
about user messaging
activity than it could

without the tracing scheme

Reduces to

SP cannot read
anything either way

16/21

Security Analysis

- Confidentiality

E2EE

 m
s = Sign(sk, m)

pk
σ = Sign(skS, pk)

SP learns nothing more
about user messaging
activity than it could

without the tracing scheme

Reduces to

Unless LE initiates trace
of reported message

16/21

Security Analysis

- Confidentiality

E2EE

 m
s = Sign(sk, m)

pk
σ = Sign(skS, pk)

SP learns nothing more
about user messaging
activity than it could

without the tracing scheme

Reduces to

Even then, m stays hidden
from SP!

16/21

Security Analysis

- Accountability

 M m
s = Sign(sk, m)

pk
σ = Sign(skS, pk)

If user originates M, it must
be traceable back to them

16/21

Security Analysis

- Accountability

 M m
s = Sign(sk, m)

pk
σ = Sign(skS, pk)

If user originates M, it must
be traceable back to them

Security of underlying
signature scheme usedReduces to

16/21

Security Analysis

- Accountability

 M m
s = Sign(sk, m)

pk
σ = Sign(skS, pk)

If user originates M, it must
be traceable back to them

Security of underlying
signature scheme usedReduces to

When reported to
LE

16/21

Security Analysis

- Accountability

 M m
s = Sign(sk, m)

pk
σ = Sign(skS, pk)

If user originates M, it must
be traceable back to them

Security of underlying
signature scheme usedReduces to

If trace fails, then
it can be either

16/21

Security Analysis

- Accountability

 M m
s = Sign(sk, m)

pk
σ = Sign(skS, pk)

If user originates M, it must
be traceable back to them

Security of underlying
signature scheme usedReduces to

a) Valid σ on pk
under skS but no
record on server

16/21

Security Analysis

- Accountability

 M m
s = Sign(sk, m)

pk
σ = Sign(skS, pk)

If user originates M, it must
be traceable back to them

Security of underlying
signature scheme usedReduces to

σ proves SP must
have seen and

signed pk
16/21

Security Analysis

- Accountability

 M m
s = Sign(sk, m)

pk
σ = Sign(skS, pk)

If user originates M, it must
be traceable back to them

Security of underlying
signature scheme usedReduces to

Which can only
mean SP is lying
or has lost data

16/21

Security Analysis

- Accountability

 M m
s = Sign(sk, m)

pk
σ = Sign(skS, pk)

If user originates M, it must
be traceable back to them

Security of underlying
signature scheme usedReduces to

b) Or LE received
report in which s or σ

doesn’t match
16/21

Security Analysis

- Accountability

 M m
s = Sign(sk, m)

pk
σ = Sign(skS, pk)

If user originates M, it must
be traceable back to them

Security of underlying
signature scheme usedReduces to

But then the user should’ve
rejected M as malformed in

the first place
16/21

Security Analysis

- Unforgeability

 M m
s = Sign(sk, m)

pk
σ = Sign(skS, pk)

Adv. cannot implicate user
in sending a message they

did not actually send

16/21

Security Analysis

- Unforgeability

 M m
s = Sign(sk, m)

pk
σ = Sign(skS, pk)

Adv. cannot lead a message
trace back to a user that did
not originate the message

16/21

Security Analysis

- Unforgeability

 M m
s = Sign(sk, m)

pk
σ = Sign(skS, pk)

Adv. cannot lead a message
trace back to a user that did
not originate the message

Security of underlying
signature scheme usedReduces to

16/21

Security Analysis

- Unforgeability

 M m
s = Sign(sk, m)

pk
σ = Sign(skS, pk)

Adv. cannot lead a message
trace back to a user that did
not originate the message

Security of underlying
signature scheme usedReduces to

No one can sign on
someone else’s behalf

16/21

Security Analysis

- Unforgeability

 M m
s = Sign(sk, m)

pk
σ = Sign(skS, pk)

Adv. cannot lead a message
trace back to a user that did
not originate the message

Security of underlying
signature scheme usedReduces to

Without having their
secret key!

16/21

Security Analysis

- Unforgeability

 M m
s = Sign(sk, m)

pk
σ = Sign(skS, pk)

Adv. cannot lead a message
trace back to a user that did
not originate the message

Security of underlying
signature scheme usedReduces to

And editing m
renders s invalid!

16/21

Security Analysis

- Unforgeability

 M m
s = Sign(sk, m)

pk
σ = Sign(skS, pk)

Adv. cannot lead a message
trace back to a user that did
not originate the message

Security of underlying
signature scheme usedReduces to

And changing pk
renders σ invalid!

16/21

Security Analysis

- Unforgeability

 M m
s = Sign(sk, m)

pk
σ = Sign(skS, pk)

Adv. cannot lead a message
trace back to a user that did
not originate the message

Security of underlying
signature scheme usedReduces to

Both sigs tie m to the
true originator of m

16/21

Security Analysis

- Unforgeability

 M m
s = Sign(sk, m)

pk
σ = Sign(skS, pk)

Adv. cannot lead a message
trace back to a user that did
not originate the message

Security of underlying
signature scheme usedReduces to

Who owns sk corr. to
the pk attached to m

16/21

Security Analysis

- Deniability

 M m
s = Sign(sk, m)

pk
σ = Sign(skS, pk)

No one but SP can prove
sender sent a message,

anyone can deny authorship
until traced

16/21

Security Analysis

- Deniability

 M m
s = Sign(sk, m)

pk
σ = Sign(skS, pk)

No one but SP can prove
sender sent a message,

anyone can deny authorship
until traced

Security of underlying
signature scheme usedReduces to

16/21

Security Analysis

- Deniability

 M m
s = Sign(sk, m)

pk
σ = Sign(skS, pk)

No one but SP can prove
sender sent a message,

anyone can deny authorship
until traced

Security of underlying
signature scheme usedReduces to

Reveals no info about user
that anyone but S can access

16/21

Security Analysis

- Deniability

 M m
s = Sign(sk, m)

pk
σ = Sign(skS, pk)

No one but SP can prove
sender sent a message,

anyone can deny authorship
until traced

Security of underlying
signature scheme usedReduces to

(pk, σ) independent of m and user
id (other than records of S)

16/21

Security Analysis

- Deniability

 M m
s = Sign(sk, m)

pk
σ = Sign(skS, pk)

No one but SP can prove
sender sent a message,

anyone can deny authorship
until traced

Security of underlying
signature scheme usedReduces to

(pk, σ) exist before m is
composed

16/21

Security Analysis

- Deniability

 M m
s = Sign(sk, m)

pk
σ = Sign(skS, pk)

No one but SP can prove
sender sent a message,

anyone can deny authorship
until traced

Security of underlying
signature scheme usedReduces to

Revealing skS on statute of
limitations allows anyone to forge

16/21

Security Analysis

- Deniability

 M m
s = Sign(sk, m)

pk
σ = Sign(skS, pk)

No one but SP can prove
sender sent a message,

anyone can deny authorship
until traced

Security of underlying
signature scheme usedReduces to

Limits old investigations, gives the sender
deniability once time T has passed

16/21

Security Analysis

- Anonymity

 M m
s = Sign(sk, m)

pk
σ = Sign(skS, pk)

No one learns anything
about source, fwd or rep.

path of msg beyond what is
guaranteed in E2EE/report

16/21

Security Analysis

- Anonymity

 M m
s = Sign(sk, m)

pk
σ = Sign(skS, pk)

No one learns anything
about source, fwd or rep.

path of msg beyond what is
guaranteed in E2EE/report

Security of underlying
signature scheme usedReduces to

16/21

Security Analysis

- Anonymity

 M m
s = Sign(sk, m)

pk
σ = Sign(skS, pk)

No one learns anything
about source, fwd or rep.

path of msg beyond what is
guaranteed in E2EE/report

Security of underlying
signature scheme usedReduces to

Reveals nothing
about who has

forwarded to whom

16/21

Security Analysis

- Anonymity

 M m
s = Sign(sk, m)

pk
σ = Sign(skS, pk)

No one learns anything
about source, fwd or rep.

path of msg beyond what is
guaranteed in E2EE/report

Security of underlying
signature scheme usedReduces to

Reveals nothing
about who has
reported to LE

16/21

Security Analysis

- Anonymity

 M m
s = Sign(sk, m)

pk
σ = Sign(skS, pk)

No one learns anything
about source, fwd or rep.

path of msg beyond what is
guaranteed in E2EE/report

Security of underlying
signature scheme usedReduces to

Sigs give nothing
beyond validation data

16/21

Security Analysis

- Anonymity

 M m
s = Sign(sk, m)

pk
σ = Sign(skS, pk)

No one learns anything
about source, fwd or rep.

path of msg beyond what is
guaranteed in E2EE/report

Security of underlying
signature scheme usedReduces to

Only tracing a report
breaks anonymity of

originator

16/21

Security Analysis

- Anonymity

 M m
s = Sign(sk, m)

pk
σ = Sign(skS, pk)

No one learns anything
about source, fwd or rep.

path of msg beyond what is
guaranteed in E2EE/report

Security of underlying
signature scheme usedReduces to

pk is pseudonymous

16/21

Security Analysis

- Anonymity

 M m
s = Sign(sk, m)

pk
σ = Sign(skS, pk)

No one learns anything
about source, fwd or rep.

path of msg beyond what is
guaranteed in E2EE/report

Security of underlying
signature scheme usedReduces to

No one but SP has access
to (pk, id) database

16/21

Security Analysis

- Backward/forward security

 M m
s = Sign(sk, m)

pk
σ = Sign(skS, pk)

Adv. cannot frame user
after they recover from adv.

compromise

Security of underlying
signature scheme usedReduces to

16/21

Security Analysis

- Backward/forward security

 M m
s = Sign(sk, m)

pk
σ = Sign(skS, pk)

Adv. cannot frame user
after they recover from adv.

compromise

Security of underlying
signature scheme usedReduces to

Adv. cannot produce
valid M under fresh
future key of user

16/21

Security Analysis

- Backward/forward security

 M m
s = Sign(sk, m)

pk
σ = Sign(skS, pk)

Adv. cannot frame user
after they recover from adv.

compromise

Security of underlying
signature scheme usedReduces to

Which is inaccessible to
adv. after user recovers

from compromise
16/21

Security Analysis

- Backward/forward security

 M m
s = Sign(sk, m)

pk
σ = Sign(skS, pk)

Adv. cannot frame user
after they recover from adv.

compromise

Security of underlying
signature scheme usedReduces to

Would need to break sig
unforgeability for that

16/21

Security Analysis

- Backward/forward security

 M m
s = Sign(sk, m)

pk
σ = Sign(skS, pk)

Security of underlying
signature scheme used

Adv. cannot alter past
message tuples that user
sent before compromise

Reduces to

16/21

Security Analysis

- Backward/forward security

 M m
s = Sign(sk, m)

pk
σ = Sign(skS, pk)

Security of underlying
signature scheme used

Adv. cannot alter past
message tuples that user
sent before compromise

Reduces to

Adv. cannot produce
valid M under past key of

user (pre-compromise)
16/21

Security Analysis

- Backward/forward security

 M m
s = Sign(sk, m)

pk
σ = Sign(skS, pk)

Security of underlying
signature scheme used

Adv. cannot alter past
message tuples that user
sent before compromise

Reduces to

Assuming user discards
used keys already!

16/21

Security Analysis

- Backward/forward security

 M m
s = Sign(sk, m)

pk
σ = Sign(skS, pk)

Security of underlying
signature scheme used

Adv. cannot alter past
message tuples that user
sent before compromise

Reduces to

Without access to corr.
sk, adv. must break sig.

to alter M
16/21

Plan for the afternoon

- The Dilemma of End-to-End Encrypted Messaging
- India’s IT Rules
- Private Originator Tracing - Overview
- Security Goals
- Related Work
- Private Originator Tracing - Syntax
- ATAVISM - a protocol sketch
- Security Analysis - Overview
- Benchmarking ATAVISM
- Tradeoffs and Limitations
- Future Work and Conclusion

Benchmarking ATAVISM

17/21

Benchmarking ATAVISM

- Prototype implemented in Typescript

17/21

Benchmarking ATAVISM

- Prototype implemented in Typescript
- Session data stored in Postgres-12 database

17/21

Benchmarking ATAVISM

- Prototype implemented in Typescript
- Session data stored in Postgres-12 database
- Ed25519 signatures used in implementation

17/21

Benchmarking ATAVISM

- Prototype implemented in Typescript
- Session data stored in Postgres-12 database
- Ed25519 signatures used in implementation
- Signal’s Double Ratchet algorithm used for encryption

17/21

Benchmarking ATAVISM

- Prototype implemented in Typescript
- Session data stored in Postgres-12 database
- Ed25519 signatures used in implementation
- Signal’s Double Ratchet algorithm used for encryption
- Tested on system: Ryzen 9 7940HS with 16GB ram running NixOS

17/21

Benchmarking ATAVISM

- Prototype implemented in Typescript
- Session data stored in Postgres-12 database
- Ed25519 signatures used in implementation
- Signal’s Double Ratchet algorithm used for encryption
- Tested on system: Ryzen 9 7940HS with 16GB ram running NixOS
- We also test on thin clients (Poco C65 phones) connected to a remote EU

server to test real-world deployability

17/21

Benchmarking ATAVISM

- Prototype implemented in Typescript
- Session data stored in Postgres-12 database
- Ed25519 signatures used in implementation
- Signal’s Double Ratchet algorithm used for encryption
- Tested on system: Ryzen 9 7940HS with 16GB ram running NixOS
- We also test on thin clients (Poco C65 phones) connected to a remote EU

server to test real-world deployability
- Barebones Rust implementation used in benchmarking for fairer comparison

17/21

Benchmarking ATAVISM

18/21

Benchmarking ATAVISM

- Everything tested on same system for fairer comparison!

18/21

Benchmarking ATAVISM

Uses symmetric
crypto

18/21

Benchmarking ATAVISM

Likely
incomparable

18/21

Benchmarking ATAVISM

Still operates in
star network!

18/21

Benchmarking ATAVISM

We do P2P w/
preprocessing

18/21

Benchmarking ATAVISM

Constant time
database lookup

18/21

Benchmarking ATAVISM

Practically a few
microseconds

18/21

Benchmarking ATAVISM

18/21

Benchmarking ATAVISM

Small overhead
of signatures

and keys

18/21

Benchmarking ATAVISM

Storing a lot of
keys for many
million users?

18/21

Benchmarking ATAVISM

Not too much of an
issue!

18/21

Benchmarking ATAVISM

18/21

Benchmarking ATAVISM

Main overhead is
bandwidth latency

18/21

Benchmarking ATAVISM

Still small enough
to be practical on

phones

18/21

Benchmarking ATAVISM

No other protocol
gives results for

thin clients!

18/21

Plan for the afternoon

- The Dilemma of End-to-End Encrypted Messaging
- India’s IT Rules
- Private Originator Tracing - Overview
- Security Goals
- Related Work
- Private Originator Tracing - Syntax
- ATAVISM - a protocol sketch
- Security Analysis - Overview
- Benchmarking ATAVISM
- Tradeoffs and Limitations
- Future Work and Conclusion

Tradeoffs and Limitations

- Ethical considerations?

19/21

Tradeoffs and Limitations

- Ethical considerations? We assume honest law enforcement!

19/21

Tradeoffs and Limitations

- Ethical considerations? Might have a chilling effect on free speech!

19/21

Tradeoffs and Limitations

- Ethical considerations? We operate in the context of 󰏝 legislation.

19/21

Tradeoffs and Limitations

- Ethical considerations? Cannot help against oppressive government policy on
what is and isn’t ruled illegal!

19/21

Tradeoffs and Limitations

- Ethical considerations? Cannot help against oppressive government policy on
what is and isn’t ruled illegal!

- We want to mainly combat fake news and hate speech

19/21

Tradeoffs and Limitations

- Ethical considerations? Cannot help against oppressive government policy on
what is and isn’t ruled illegal!

- We want to mainly combat fake news and hate speech - cannot do anything if
LE flags an otherwise innocuous message 😈

19/21

Tradeoffs and Limitations

- Ethical considerations? Cannot help against oppressive government policy on
what is and isn’t ruled illegal!

- We want to mainly combat fake news and hate speech - cannot do anything if
LE flags an otherwise innocuous message

Empowered to act
ethically!

19/21

Tradeoffs and Limitations

- Ethical considerations? Cannot help against oppressive government policy on
what is and isn’t ruled illegal!

- We want to mainly combat fake news and hate speech - cannot do anything if
LE flags an otherwise innocuous message

Not focusing on
criminal content

19/21

Tradeoffs and Limitations

- Ethical considerations? Cannot help against oppressive government policy on
what is and isn’t ruled illegal!

- We want to mainly combat fake news and hate speech - cannot do anything if
LE flags an otherwise innocuous message

Like CSAM

19/21

Tradeoffs and Limitations

- Ethical considerations? Cannot help against oppressive government policy on
what is and isn’t ruled illegal!

- We want to mainly combat fake news and hate speech - cannot do anything if
LE flags an otherwise innocuous message

Since criminals can
move to less

regulated platforms

19/21

Tradeoffs and Limitations

- Ethical considerations? Cannot help against oppressive government policy on
what is and isn’t ruled illegal!

- We want to mainly combat fake news and hate speech - cannot do anything if
LE flags an otherwise innocuous message

- Cannot help against social engineering

19/21

Tradeoffs and Limitations

- Ethical considerations? Cannot help against oppressive government policy on
what is and isn’t ruled illegal!

- We want to mainly combat fake news and hate speech - cannot do anything if
LE flags an otherwise innocuous message

- Cannot help against social engineering - ATAVISM only traces user ID (eg.
phone number)

19/21

Tradeoffs and Limitations

- Ethical considerations? Cannot help against oppressive government policy on
what is and isn’t ruled illegal!

- We want to mainly combat fake news and hate speech - cannot do anything if
LE flags an otherwise innocuous message

- Cannot help against social engineering - a bad guy can take over an honest
person’s SIM card

19/21

Tradeoffs and Limitations

- Ethical considerations? Cannot help against oppressive government policy on
what is and isn’t ruled illegal!

- We want to mainly combat fake news and hate speech - cannot do anything if
LE flags an otherwise innocuous message

- Cannot help against social engineering - a bad guy can take over an honest
person’s SIM card

- Storage costs?

19/21

Tradeoffs and Limitations

- Ethical considerations? Cannot help against oppressive government policy on
what is and isn’t ruled illegal!

- We want to mainly combat fake news and hate speech - cannot do anything if
LE flags an otherwise innocuous message

- Cannot help against social engineering - a bad guy can take over an honest
person’s SIM card

- Storage costs? We did the math!

19/21

Tradeoffs and Limitations

- Ethical considerations? Cannot help against oppressive government policy on
what is and isn’t ruled illegal!

- We want to mainly combat fake news and hate speech - cannot do anything if
LE flags an otherwise innocuous message

- Cannot help against social engineering - a bad guy can take over an honest
person’s SIM card

- Storage costs? Need ~288TB for >2B users sending ~100B messages/day on
WhatsApp

19/21

Tradeoffs and Limitations

- Ethical considerations? Cannot help against oppressive government policy on
what is and isn’t ruled illegal!

- We want to mainly combat fake news and hate speech - cannot do anything if
LE flags an otherwise innocuous message

- Cannot help against social engineering - a bad guy can take over an honest
person’s SIM card

- Storage costs? Need ~288TB for >2B users sending ~100B messages/day on
WhatsApp

Doesn’t grow over
time. Why?

19/21

Tradeoffs and Limitations

- Ethical considerations? Cannot help against oppressive government policy on
what is and isn’t ruled illegal!

- We want to mainly combat fake news and hate speech - cannot do anything if
LE flags an otherwise innocuous message

- Cannot help against social engineering - a bad guy can take over an honest
person’s SIM card

- Storage costs? Need ~288TB for >2B users sending ~100B messages/day on
WhatsApp

Statute of
limitations!

19/21

Tradeoffs and Limitations

- Ethical considerations? Cannot help against oppressive government policy on
what is and isn’t ruled illegal!

- We want to mainly combat fake news and hate speech - cannot do anything if
LE flags an otherwise innocuous message

- Cannot help against social engineering - a bad guy can take over an honest
person’s SIM card

- Storage costs? Need ~288TB for >2B users sending ~100B messages/day on
WhatsApp

SP expected to
delete database and

key-rotate after
time T 19/21

Tradeoffs and Limitations

- Ethical considerations? Cannot help against oppressive government policy on
what is and isn’t ruled illegal!

- We want to mainly combat fake news and hate speech - cannot do anything if
LE flags an otherwise innocuous message

- Cannot help against social engineering - a bad guy can take over an honest
person’s SIM card

- Storage costs? Need ~288TB for >2B users sending ~100B messages/day on
WhatsApp

- Public key signing?

19/21

Tradeoffs and Limitations

- Ethical considerations? Cannot help against oppressive government policy on
what is and isn’t ruled illegal!

- We want to mainly combat fake news and hate speech - cannot do anything if
LE flags an otherwise innocuous message

- Cannot help against social engineering - a bad guy can take over an honest
person’s SIM card

- Storage costs? Need ~288TB for >2B users sending ~100B messages/day on
WhatsApp

- Public key signing? Can be done asynchronously, not needed at runtime!

19/21

Tradeoffs and Limitations

- Ethical considerations? Cannot help against oppressive government policy on
what is and isn’t ruled illegal!

- We want to mainly combat fake news and hate speech - cannot do anything if
LE flags an otherwise innocuous message

- Cannot help against social engineering - a bad guy can take over an honest
person’s SIM card

- Storage costs? Need ~288TB for >2B users sending ~100B messages/day on
WhatsApp

- Public key signing? Do it when network load is low!

19/21

Tradeoffs and Limitations

- Ethical considerations? Cannot help against oppressive government policy on
what is and isn’t ruled illegal!

- We want to mainly combat fake news and hate speech - cannot do anything if
LE flags an otherwise innocuous message

- Cannot help against social engineering - a bad guy can take over an honest
person’s SIM card

- Storage costs? Need ~288TB for >2B users sending ~100B messages/day on
WhatsApp

- Public key signing? Still want to remove the need to produce so many keypairs
and signatures!

19/21

Tradeoffs and Limitations

- (Pseudo) Tree-linkability:

20/21

Tradeoffs and Limitations

- (Pseudo) Tree-linkability:

 M

Service
Provider

m
s = Sign(sk, m)

pk
 σ

M M

M

20/21

Tradeoffs and Limitations

- (Pseudo) Tree-linkability:

 M

Service
Provider

m
s = Sign(sk, m)

pk
 σ

M M

M

20/21

Tradeoffs and Limitations

- (Pseudo) Tree-linkability:

 M

Service
Provider

m
s = Sign(sk, m)

pk
 σ

M M

M
Must be
from the

same guy!

20/21

Tradeoffs and Limitations

- (Pseudo) Tree-linkability:

 M

Service
Provider

m
s = Sign(sk, m)

pk
 σ

M M

M

Since (m,
s, pk, σ)
all match

up!

20/21

Tradeoffs and Limitations

- (Pseudo) Tree-linkability:

 M

Service
Provider

m
s = Sign(sk, m)

pk
 σ

M M

M
No clue
who it is
though!

20/21

Tradeoffs and Limitations

- (Pseudo) Tree-linkability:

 M

Service
Provider

m
s = Sign(sk, m)

pk
 σ

M M

M
No clue
who it is
though!

Since pk is
pseudonymous

20/21

Tradeoffs and Limitations

- (Pseudo) Tree-linkability:

 M

Service
Provider

m
s = Sign(sk, m)

pk
 σ

M M

M
No clue
who it is
though!

And (pk, id) only
known by SP

20/21

Tradeoffs and Limitations

- (Pseudo) Tree-linkability:

 M

Service
Provider

m
s = Sign(sk, m)

pk
 σ

M M

M
No clue
who it is
though!

We think this
is still okay…

20/21

Plan for the afternoon

- The Dilemma of End-to-End Encrypted Messaging
- India’s IT Rules
- Private Originator Tracing - Overview
- Security Goals
- Related Work
- Private Originator Tracing - Syntax
- ATAVISM - a protocol sketch
- Security Analysis - Overview
- Benchmarking ATAVISM
- Tradeoffs and Limitations
- Future Work and Conclusion

Future Work and Conclusion

- Semi-honest ➡ malicious service provider

21/21

Future Work and Conclusion

- Semi-honest ➡ malicious service provider

Assumed since we are
relying on service to work

properly

21/21

Future Work and Conclusion

- Semi-honest ➡ malicious service provider
- Semi-honest ➡ malicious law enforcement

21/21

Future Work and Conclusion

- Semi-honest ➡ malicious service provider
- Semi-honest ➡ malicious law enforcement

Can we build any
safeguards at all?

21/21

Future Work and Conclusion

- Semi-honest ➡ malicious service provider
- Semi-honest ➡ malicious law enforcement

What about when they
collude with users?

21/21

Future Work and Conclusion

- Semi-honest ➡ malicious service provider
- Semi-honest ➡ malicious law enforcement
- Optimize server involvement in preprocessing/refresh

21/21

Future Work and Conclusion

- Semi-honest ➡ malicious service provider
- Semi-honest ➡ malicious law enforcement
- Optimize server involvement in preprocessing/refresh

Looking into
structure-preserving

signatures over
equivalence classes

21/21

Future Work and Conclusion

- Semi-honest ➡ malicious service provider
- Semi-honest ➡ malicious law enforcement
- Optimize server involvement in preprocessing/refresh
- Pseudo tree-linkability ➡ Full tree unlinkability

21/21

Future Work and Conclusion

- Semi-honest ➡ malicious service provider
- Semi-honest ➡ malicious law enforcement
- Optimize server involvement in preprocessing/refresh
- Pseudo tree-linkability ➡ Full tree unlinkability

Looking into invisible
and unlinkable

sanitizable signatures

21/21

Future Work and Conclusion

- Semi-honest ➡ malicious service provider
- Semi-honest ➡ malicious law enforcement
- Optimize server involvement in preprocessing/refresh
- Pseudo tree-linkability ➡ Full tree unlinkability
- Filter spam reports to LE?

21/21

Future Work and Conclusion

- Semi-honest ➡ malicious service provider
- Semi-honest ➡ malicious law enforcement
- Optimize server involvement in preprocessing/refresh
- Pseudo tree-linkability ➡ Full tree unlinkability
- Filter spam reports to LE? Thought not technically illegal!

21/21

Future Work and Conclusion

- Semi-honest ➡ malicious service provider
- Semi-honest ➡ malicious law enforcement
- Optimize server involvement in preprocessing/refresh
- Pseudo tree-linkability ➡ Full tree unlinkability
- Filter spam reports to LE? Thought not technically illegal!
- Distributed storage version: 🥸 ➡ 😎

21/21

Future Work and Conclusion

- Semi-honest ➡ malicious service provider
- Semi-honest ➡ malicious law enforcement
- Optimize server involvement in preprocessing/refresh
- Pseudo tree-linkability ➡ Full tree unlinkability
- Filter spam reports to LE? Thought not technically illegal!
- Distributed storage version: 🥸 ➡ 😎

Thank you for
your time! 🙏

Questions?

21/21

- Indian IT Rules, 2021, Available: https://www.meity.gov.in/static/uploads/2024/02/Information-Technology-Intermediary-Guidelines-and-Digital-
Media-Ethics-Code-Rules-2021-updated-06.04.2023-.pdf

- P. Grubbs, J. Lu, and T. Ristenpart, “Message franking via committing authenticated encryption,” in Advances in Cryptology - CRYPTO 2017 - 37th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part III, ser. Lecture Notes in Computer
Science, J. Katz and H. Shacham, Eds., vol. 10403. Springer, 2017, pp. 66–97.

- Y. Dodis, P. Grubbs, T. Ristenpart, and J. Woodage, “Fast message franking: From invisible salamanders to encryptment,” in Advances in Cryptology -
CRYPTO 2018 - 38th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2018, Proceedings, Part I, ser. Lecture
Notes in Computer Science, H. Shacham and A. Boldyreva, Eds., vol. 10991. Springer, 2018, pp. 155–186.

- N. Tyagi, P. Grubbs, J. Len, I. Miers, and T. Ristenpart, “Asymmetric message franking: Content moderation for metadata-private end-to- end
encryption,” in Advances in Cryptology - CRYPTO 2019 - 39th Annual International Cryptology Conference, Santa Barbara, CA, USA, August
18-22, 2019, Proceedings, Part III, ser. Lecture Notes in Computer Science, A. Boldyreva and D. Micciancio, Eds., vol. 11694. Springer, 2019, pp.
222–250

- N. Tyagi, I. Miers, and T. Ristenpart, “Traceback for end-to-end encrypted messaging,” in Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2019, London, UK, November 11-15, 2019, L. Cavallaro, J. Kinder, X. Wang, and J. Katz, Eds. ACM,
2019, pp. 413–421.

- R. Issa, N. Alhaddad, and M. Varia, “Hecate: Abuse reporting in secure messengers with sealed sender,” in 31st USENIX Security Symposium,
USENIX Security 2022, Boston, MA, USA, August 10-12, 2022, K. R. B. Butler and K. Thomas, Eds. USENIX Association, 2022, pp. 2335–2352.

- C. Peale, S. Eskandarian, and D. Boneh, “Secure complaint-enabled source-tracking for encrypted messaging,” in CCS ’21: 2021 ACM SIGSAC
Conference on Computer and Communications Security, Virtual Event, Republic of Korea, November 15 - 19, 2021, Y. Kim, J. Kim, G. Vigna, and E.
Shi, Eds. ACM, 2021, pp. 1484–1506.

- L. Liu, D. S. Roche, A. Theriault, and A. Yerukhimovich, “Fighting fake news in encrypted messaging with the fuzzy anonymous complaint tally
system (FACTS),” in 29th Annual Network and Distributed System Security Symposium, NDSS 2022, San Diego, California, USA, April 24-28,
2022. The Internet Society, 2022.

- E. Kenney, Q. Tang, and C. Wu, “Anonymous traceback for end-to-end encryption,” in Computer Security - ESORICS 2022 - 27th European
Symposium on Research in Computer Security, Copenhagen, Denmark, September 26-21, 2022, Proceedings, Part II, ser. Lecture Notes in Computer
Science, V. Atluri, R. D. Pietro, C. D. Jensen, and W. Meng, Eds., vol. 13555. Springer, 2022, pp. 42–62

References

