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FHE was first proposed by Gentry in [1] using ideal lattices - this finally enabled
additive as well as multiplicatively homomorphic operations on encrypted data.

Since then, a number of schemes have cropped up which promise more efficient
computations in such a way that the resultant noise stays below a threshold (via
bootstrapping or modulus switching, for instance) and the resultant ciphertext size
does not grow too large (via relinearization). Most of these schemes are based on
the hardness assumption of the Ring-LWE problem.

These include:

• Brakerski-Fan/Vercauteren (BFV) [2]

• Brakerski-Gentry-Vaikuntanathan (BGV) [3]

• Cheon-Kim-Kim-Song (CKKS), which supports approximate arithmetic [4]

• Gentry-Sahai-Waters (GSW) [5]

• Homomorphic Encryption over the Torus (TFHE) [6]

• FHEW due to Ducas and Micciancio [7]
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Some common methods:
• MakePackedPlaintext(pt) -> pt1 - Encode the plaintext vector into packed form
• EvalAdd(ct1, ct2) -> ct3 - Perform homomorphic addition
• EvalSub(ct1, ct2) -> ct3 - Perform homomorphic subtraction
• EvalMult(ct1, ct2) -> ct3 - Perform homomorphic multiplication
• EvalMultKeyGen(sk) - Generate the relinearization key used for EvalMult
• EvalSum(ct, batchSize) -> ct1 - Evaluate the sum of all components in a vector
• EvalSquare(ct) -> ct1 - Compute the square of a ciphertext



OpenFHE: Basic usage

This is a sample code template that demonstrates usage of the BFV-RNS (residue
number system) scheme for performing FHE (add and mult) on two plaintext vectors:

from openfhe import *

# Set CryptoContext
parameters = CCParamsBFVRNS() # Create instance of the BFV-RNS scheme
parameters.SetPlaintextModulus(65537) # Define plaintext space
parameters.SetMultiplicativeDepth(4) # Max no. of mults w/o bootstrapping

crypto_context = GenCryptoContext(parameters)
crypto_context.Enable(PKESchemeFeature.PKE) # Allow public-key encryption
crypto_context.Enable(PKESchemeFeature.LEVELEDSHE) # Enable leveled FHE w/o
bootstrapping
crypto_context.Enable(PKESchemeFeature.KEYSWITCH) # Enable key switching /
relinearization

# Generate (pk, sk)
key_pair = crypto_context.KeyGen()



# Generate the relinearization key
crypto_context.EvalMultKeyGen(key_pair.secretKey)

# Encode first plaintext vector
vec1 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
pt1 = crypto_context.MakePackedPlaintext(vec1)

# Encode second plaintext vector
vec2 = [11, 12, 13, 14, 15, 16, 17, 18, 19, 20]
pt2 = crypto_context.MakePackedPlaintext(vec2)

# Encrypt the two vectors using the same public key
ct1 = crypto_context.Encrypt(key_pair.publicKey, pt1)
ct2 = crypto_context.Encrypt(key_pair.publicKey, pt2)

# Homomorphic addition
ct_add = crypto_context.EvalAdd(ct1, ct2)

# Homomorphic multiplication
ct_mult = crypto_context.EvalMult(ct1, ct2)

# Decrypt the result of the addition



pt_add = crypto_context.Decrypt(ct_add, key_pair.secretKey)

# Decrypt the result of the multiplication
pt_mult = crypto_context.Decrypt(ct_mult ,key_pair.secretKey)

print("Plaintext #1: " + str(pt1))
print("Plaintext #2: " + str(pt2))

# Output results
print("#1 + #2 = " + str(pt_add))
print("#1 * #2 = " + str(pt_mult))

Output:

Plaintext #1: ( 1 2 3 4 5 6 7 8 9 10 ... )
Plaintext #2: ( 11 12 13 14 15 16 17 18 19 20 ... )
#1 + #2 = ( 12 14 16 18 20 22 24 26 28 30 ... )
#1 * #2 = ( 11 24 39 56 75 96 119 144 171 200 ... )

Refer to the OpenFHE GitHub repository for more detailed examples that also
demonstrate bootstrapping and Threshold-FHE, both of which are beyond the scope
of this lab.
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• Polynomial evaluation:
‣ Take a multivariate polynomial, say, 𝑃(𝑥, 𝑦) = 2𝑥2 + 3𝑥𝑦 + 4𝑦2 + 5𝑥 + 6𝑦 + 7
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• Arithmetic mean:
‣ Encrypt a dataset 𝐴 = [412, 8423, 66, 891, 277, 84, 5, 9]
‣ Homomorphically compute the arithmetic mean of 𝐴
‣ Decrypt and verify the result
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