
Fully Homomorphic Encryption Lab

Archisman Dutta

Fully Homomorphic Encryption: A primer

Fully Homomorphic Encryption (FHE) is a cryptographic primitive that allows
performing computations on encrypted data without decrypting it first.

Fully Homomorphic Encryption: A primer

Fully Homomorphic Encryption (FHE) is a cryptographic primitive that allows
performing computations on encrypted data without decrypting it first.

Formally, an FHE scheme ℋ is a 4-tuple of algorithms (KeyGen, Enc, Dec, Eval)
such that, for any (pk, sk) ←

$
 KeyGen(𝜆), plaintext 𝑚 and ciphertext 𝑐 = Enc(pk, m),

the following equality holds for all polynomial circuits 𝐶 :

Dec(sk, Eval(pk, 𝑐, 𝐶)) = 𝐶(𝑚)

Fully Homomorphic Encryption: A primer

Fully Homomorphic Encryption (FHE) is a cryptographic primitive that allows
performing computations on encrypted data without decrypting it first.

Formally, an FHE scheme ℋ is a 4-tuple of algorithms (KeyGen, Enc, Dec, Eval)
such that, for any (pk, sk) ←

$
 KeyGen(𝜆), plaintext 𝑚 and ciphertext 𝑐 = Enc(pk, m),

the following equality holds for all polynomial circuits 𝐶 :

Dec(sk, Eval(pk, 𝑐, 𝐶)) = 𝐶(𝑚)

Types of FHE schemes

FHE was first proposed by Gentry in [1] using ideal lattices - this finally enabled
additive as well as multiplicatively homomorphic operations on encrypted data.

Types of FHE schemes

FHE was first proposed by Gentry in [1] using ideal lattices - this finally enabled
additive as well as multiplicatively homomorphic operations on encrypted data.

Since then, a number of schemes have cropped up which promise more efficient
computations in such a way that the resultant noise stays below a threshold (via
bootstrapping or modulus switching, for instance) and the resultant ciphertext size
does not grow too large (via relinearization). Most of these schemes are based on
the hardness assumption of the Ring-LWE problem.

Types of FHE schemes

FHE was first proposed by Gentry in [1] using ideal lattices - this finally enabled
additive as well as multiplicatively homomorphic operations on encrypted data.

Since then, a number of schemes have cropped up which promise more efficient
computations in such a way that the resultant noise stays below a threshold (via
bootstrapping or modulus switching, for instance) and the resultant ciphertext size
does not grow too large (via relinearization). Most of these schemes are based on
the hardness assumption of the Ring-LWE problem.

These include:

• Brakerski-Fan/Vercauteren (BFV) [2]

• Brakerski-Gentry-Vaikuntanathan (BGV) [3]

• Cheon-Kim-Kim-Song (CKKS), which supports approximate arithmetic [4]

• Gentry-Sahai-Waters (GSW) [5]

• Homomorphic Encryption over the Torus (TFHE) [6]

• FHEW due to Ducas and Micciancio [7]

A Brief History of Time FHE

Introduction to OpenFHE

OpenFHE is a comprehensive library for employing FHE in code that provides APIs in
C/C++, Python and Rust, supporting schemes like BGV, CKKS, and BFV. Here, we
demonstrate usage using the Python bindings for OpenFHE’s BFV scheme
implementation.

Introduction to OpenFHE

OpenFHE is a comprehensive library for employing FHE in code that provides APIs in
C/C++, Python and Rust, supporting schemes like BGV, CKKS, and BFV. Here, we
demonstrate usage using the Python bindings for OpenFHE’s BFV scheme
implementation.

Documentation:

• https://github.com/openfheorg/openfhe-python

• https://openfheorg.github.io/openfhe-python/html/index.html

Introduction to OpenFHE

OpenFHE is a comprehensive library for employing FHE in code that provides APIs in
C/C++, Python and Rust, supporting schemes like BGV, CKKS, and BFV. Here, we
demonstrate usage using the Python bindings for OpenFHE’s BFV scheme
implementation.

Documentation:

• https://github.com/openfheorg/openfhe-python

• https://openfheorg.github.io/openfhe-python/html/index.html

Some common methods:
• MakePackedPlaintext(pt) -> pt1 - Encode the plaintext vector into packed form
• EvalAdd(ct1, ct2) -> ct3 - Perform homomorphic addition
• EvalSub(ct1, ct2) -> ct3 - Perform homomorphic subtraction
• EvalMult(ct1, ct2) -> ct3 - Perform homomorphic multiplication
• EvalMultKeyGen(sk) - Generate the relinearization key used for EvalMult
• EvalSum(ct, batchSize) -> ct1 - Evaluate the sum of all components in a vector
• EvalSquare(ct) -> ct1 - Compute the square of a ciphertext

OpenFHE: Basic usage

This is a sample code template that demonstrates usage of the BFV-RNS (residue
number system) scheme for performing FHE (add and mult) on two plaintext vectors:

from openfhe import *

Set CryptoContext
parameters = CCParamsBFVRNS() # Create instance of the BFV-RNS scheme
parameters.SetPlaintextModulus(65537) # Define plaintext space
parameters.SetMultiplicativeDepth(4) # Max no. of mults w/o bootstrapping

crypto_context = GenCryptoContext(parameters)
crypto_context.Enable(PKESchemeFeature.PKE) # Allow public-key encryption
crypto_context.Enable(PKESchemeFeature.LEVELEDSHE) # Enable leveled FHE w/o
bootstrapping
crypto_context.Enable(PKESchemeFeature.KEYSWITCH) # Enable key switching /
relinearization

Generate (pk, sk)
key_pair = crypto_context.KeyGen()

Generate the relinearization key
crypto_context.EvalMultKeyGen(key_pair.secretKey)

Encode first plaintext vector
vec1 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
pt1 = crypto_context.MakePackedPlaintext(vec1)

Encode second plaintext vector
vec2 = [11, 12, 13, 14, 15, 16, 17, 18, 19, 20]
pt2 = crypto_context.MakePackedPlaintext(vec2)

Encrypt the two vectors using the same public key
ct1 = crypto_context.Encrypt(key_pair.publicKey, pt1)
ct2 = crypto_context.Encrypt(key_pair.publicKey, pt2)

Homomorphic addition
ct_add = crypto_context.EvalAdd(ct1, ct2)

Homomorphic multiplication
ct_mult = crypto_context.EvalMult(ct1, ct2)

Decrypt the result of the addition

pt_add = crypto_context.Decrypt(ct_add, key_pair.secretKey)

Decrypt the result of the multiplication
pt_mult = crypto_context.Decrypt(ct_mult ,key_pair.secretKey)

print("Plaintext #1: " + str(pt1))
print("Plaintext #2: " + str(pt2))

Output results
print("#1 + #2 = " + str(pt_add))
print("#1 * #2 = " + str(pt_mult))

Output:

Plaintext #1: (1 2 3 4 5 6 7 8 9 10 ...)
Plaintext #2: (11 12 13 14 15 16 17 18 19 20 ...)
#1 + #2 = (12 14 16 18 20 22 24 26 28 30 ...)
#1 * #2 = (11 24 39 56 75 96 119 144 171 200 ...)

Refer to the OpenFHE GitHub repository for more detailed examples that also
demonstrate bootstrapping and Threshold-FHE, both of which are beyond the scope
of this lab.

Exercises on FHE

You are encouraged to play around with the OpenFHE library! BFV and BGV are two
of the simpler FHE schemes with wide-ranging applications. Here are some
exercises you can try out:

Exercises on FHE

You are encouraged to play around with the OpenFHE library! BFV and BGV are two
of the simpler FHE schemes with wide-ranging applications. Here are some
exercises you can try out:
• Integer comparison:
‣ Encrypt two arbitrary integers 𝑎 = 6, 𝑏 = 8
‣ Compare them homomorphically
‣ Decrypt and verify the result

Exercises on FHE

You are encouraged to play around with the OpenFHE library! BFV and BGV are two
of the simpler FHE schemes with wide-ranging applications. Here are some
exercises you can try out:
• Integer comparison:
‣ Encrypt two arbitrary integers 𝑎 = 6, 𝑏 = 8
‣ Compare them homomorphically
‣ Decrypt and verify the result

• Prove some basic algebraic identities:
‣ (𝑎 ± 𝑏)2 = 𝑎2 ± 2𝑎𝑏 + 𝑏2

‣ (𝑎2 − 𝑏2) = (𝑎 + 𝑏)(𝑎 − 𝑏)
‣ (𝑎 + 𝑏)3 = 𝑎3 + 3𝑎2𝑏 + 3𝑎𝑏3 + 𝑏3

‣ (𝑎 ± 𝑏)3 = 𝑎3 ± 3𝑎2𝑏 + 3𝑎𝑏3 + 𝑏3

‣ (𝑎 + 𝑏 + 𝑐)2 = 𝑎2 + 𝑏2 + 𝑐2 + 2(𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎)

Exercises on FHE

You are encouraged to play around with the OpenFHE library! BFV and BGV are two
of the simpler FHE schemes with wide-ranging applications. Here are some
exercises you can try out:
• Integer comparison:
‣ Encrypt two arbitrary integers 𝑎 = 6, 𝑏 = 8
‣ Compare them homomorphically
‣ Decrypt and verify the result

• Prove some basic algebraic identities:
‣ (𝑎 ± 𝑏)2 = 𝑎2 ± 2𝑎𝑏 + 𝑏2

‣ (𝑎2 − 𝑏2) = (𝑎 + 𝑏)(𝑎 − 𝑏)
‣ (𝑎 + 𝑏)3 = 𝑎3 + 3𝑎2𝑏 + 3𝑎𝑏3 + 𝑏3

‣ (𝑎 ± 𝑏)3 = 𝑎3 ± 3𝑎2𝑏 + 3𝑎𝑏3 + 𝑏3

‣ (𝑎 + 𝑏 + 𝑐)2 = 𝑎2 + 𝑏2 + 𝑐2 + 2(𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎)
• Polynomial evaluation:
‣ Take a multivariate polynomial, say, 𝑃(𝑥, 𝑦) = 2𝑥2 + 3𝑥𝑦 + 4𝑦2 + 5𝑥 + 6𝑦 + 7
‣ Evaluate the polynomial homomorphically on, say, 𝑥 = 3, 𝑦 = 4
‣ Decrypt and verify the result 𝑃(3, 4) = 164

Exercises on FHE (contd.)

• Matrix multiplication:
‣ Encrypt two matrices 𝐴 = (1

3
2
4), 𝐵 = (5

7
6
8)

‣ Perform homomorphic matrix multiplication
‣ Decrypt and verify the result matches the product 𝐶 = 𝐴 ⋅ 𝐵 = (19

43
22
50)

Exercises on FHE (contd.)

• Matrix multiplication:
‣ Encrypt two matrices 𝐴 = (1

3
2
4), 𝐵 = (5

7
6
8)

‣ Perform homomorphic matrix multiplication
‣ Decrypt and verify the result matches the product 𝐶 = 𝐴 ⋅ 𝐵 = (19

43
22
50)

• Inner product:
‣ Encrypt two vectors 𝑣1 = [1, 2], 𝑣2 = [3, 4]
‣ Compute the homomorphic inner product 𝑝 = ⟨𝑣1, 𝑣2⟩
‣ Decrypt and verify the results match 𝑝 = 32

Exercises on FHE (contd.)

• Matrix multiplication:
‣ Encrypt two matrices 𝐴 = (1

3
2
4), 𝐵 = (5

7
6
8)

‣ Perform homomorphic matrix multiplication
‣ Decrypt and verify the result matches the product 𝐶 = 𝐴 ⋅ 𝐵 = (19

43
22
50)

• Inner product:
‣ Encrypt two vectors 𝑣1 = [1, 2], 𝑣2 = [3, 4]
‣ Compute the homomorphic inner product 𝑝 = ⟨𝑣1, 𝑣2⟩
‣ Decrypt and verify the results match 𝑝 = 32

• Determinant:
‣ Encrypt a matrix 𝐴 = (1

3
2
4)

‣ Compute the determinant det(𝐴) = 𝑎𝑑 − 𝑏𝑐
‣ Decrypt and verify the results match det(𝐴) = −2

Exercises on FHE (contd.)

• Matrix multiplication:
‣ Encrypt two matrices 𝐴 = (1

3
2
4), 𝐵 = (5

7
6
8)

‣ Perform homomorphic matrix multiplication
‣ Decrypt and verify the result matches the product 𝐶 = 𝐴 ⋅ 𝐵 = (19

43
22
50)

• Inner product:
‣ Encrypt two vectors 𝑣1 = [1, 2], 𝑣2 = [3, 4]
‣ Compute the homomorphic inner product 𝑝 = ⟨𝑣1, 𝑣2⟩
‣ Decrypt and verify the results match 𝑝 = 32

• Determinant:
‣ Encrypt a matrix 𝐴 = (1

3
2
4)

‣ Compute the determinant det(𝐴) = 𝑎𝑑 − 𝑏𝑐
‣ Decrypt and verify the results match det(𝐴) = −2

• Arithmetic mean:
‣ Encrypt a dataset 𝐴 = [412, 8423, 66, 891, 277, 84, 5, 9]
‣ Homomorphically compute the arithmetic mean of 𝐴
‣ Decrypt and verify the result

Bibliography
[1] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proceedings of

the forty-first annual ACM symposium on Theory of computing, 2009, pp. 169–
178.

[2] J. Fan and F. Vercauteren, “Somewhat Practical Fully Homomorphic
Encryption.” [Online]. Available: https://eprint.iacr.org/2012/144

[3] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “Fully Homomorphic Encryption
without Bootstrapping.” [Online]. Available: https://eprint.iacr.org/2011/277

[4] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic Encryption for
Arithmetic of Approximate Numbers.” [Online]. Available: https://eprint.iacr.org/
2016/421

[5] C. Gentry, A. Sahai, and B. Waters, “Homomorphic Encryption from Learning with
Errors: Conceptually-Simpler, Asymptotically-Faster, Attribute-Based.” [Online].
Available: https://eprint.iacr.org/2013/340

https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2011/277
https://eprint.iacr.org/2016/421
https://eprint.iacr.org/2016/421
https://eprint.iacr.org/2013/340

[6] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, “TFHE: Fast Fully
Homomorphic Encryption over the Torus.” [Online]. Available: https://eprint.iacr.
org/2018/421

[7] L. Ducas and D. Micciancio, “FHEW: Bootstrapping Homomorphic Encryption in
less than a second.” [Online]. Available: https://eprint.iacr.org/2014/816

https://eprint.iacr.org/2018/421
https://eprint.iacr.org/2018/421
https://eprint.iacr.org/2014/816

	Fully Homomorphic Encryption Lab
	Fully Homomorphic Encryption: A primer
	Types of FHE schemes
	A Brief History of Time FHE
	Introduction to OpenFHE
	OpenFHE: Basic usage
	Exercises on FHE
	Exercises on FHE (contd.)

	Bibliography

